ММ₁К₁К - трапеция СС₁- средняя линия трапеции СС₁=(ММ₁+КК₁)/2=(16+6)/2=11
2) Точка M имеет абсциссу х=√(12) =2√3 ординату у=0 Точка К имеет асбциссу х=-2 ордината у находится из уравнения у²=12-4 у=√8 у=2√2 точка O (0;0) ОМ имеет длину 2√3 ОМ- радиус вектор ОМ=2√3 ОМ=ОК=2√3
tg∠КОМ=-√2 ( так как тангенс смежного с ним угла α равен √2 tg α=2√2/2=√2) cos²∠КОМ= 1/(1+tg²∠KOM)=1/3 sin²∠КОМ=1-cos²∠KOM=1-(1/3)=2/3 sin ∠KOM=√(2/3) S=ОК·ОМ· sin ∠KOM/2= (2√3)²·(√(2/3))/2=2√6 кв. ед
ММ₁К₁К - трапеция
СС₁- средняя линия трапеции
СС₁=(ММ₁+КК₁)/2=(16+6)/2=11
2) Точка M имеет абсциссу х=√(12) =2√3 ординату у=0
Точка К имеет асбциссу х=-2 ордината у находится из уравнения
у²=12-4
у=√8
у=2√2
точка O (0;0)
ОМ имеет длину 2√3
ОМ- радиус вектор
ОМ=2√3
ОМ=ОК=2√3
tg∠КОМ=-√2 ( так как тангенс смежного с ним угла α равен √2 tg α=2√2/2=√2)
cos²∠КОМ= 1/(1+tg²∠KOM)=1/3
sin²∠КОМ=1-cos²∠KOM=1-(1/3)=2/3
sin ∠KOM=√(2/3)
S=ОК·ОМ· sin ∠KOM/2= (2√3)²·(√(2/3))/2=2√6 кв. ед
ответ:Все грани прямоугольного параллелепипеда - прямоугольники.
Двугранный угол DABD₁ - это угол между плоскостями DAB и ABD₁.
АВ - ребро двугранного угла.
DA⊥AB как стороны квадрата,
DA - проекция наклонной D₁A на плоскость DAB, значит
D₁A⊥АВ по теореме о трех перпендикулярах.
DA⊥AB и D₁A⊥АВ,, значит ∠D₁AD - линейный угол двугранного угла D₁ABD.
ΔADC: ∠ADC = 90°, по теореме Пифагора
AD = √(AC² - CD²) = √(100 - 36) = √64 = 8 дм
ΔD₁AD: ∠D₁DA = 90°, DD₁ = AA₁ = 8√3 дм, AD = 8 дм,
tg∠D₁AD = D₁D / AD = 8√3 / 8 = √3
∠D₁AD = 60°
Объяснение: