Окружности заключены между параллельными, следовательно их диаметры равны расстоянию между параллельными.
Окружности лежат внутри параллелограмма, следовательно заключены между большими сторонами.
Центры равноудалены от больших сторон => линия центров параллельна большим сторонам параллелограмма.
Данный параллелограмм можно разделить на два ромба.
В ромб можно вписать окружность.
Окружности касаются => внутренняя касательная перпендикулярна линии центров, а значит и большим сторонам параллелограмма.
Ромб с перпендикулярными сторонами - квадрат.
Искомая площадь равна двум квадратам со стороной x.
По теореме Пифагора x=4/√5
S =2*16/5 =6,4
ответ: 28, 19,8
Объяснение:
1. Катет, лежащий напротив угла в 30 градусов равен половине гипотенузы. Следовательно, гипотенуза DE=DF*2=14*2=28 см
2. Угол А= 90- угол В=90-60=30. Катет, лежащий против угла в 30 градусов равен половине гипотенузы. ВС=38/2=19 см
3. ΔКРЕ: ∠Р = 90°, ∠К = 60°, ⇒ ∠Е = 30°.
ΔРКМ: ∠КРМ = 90°, ∠КМР = 60°, ⇒ ∠МКР = 30°.
∠PKM = 30°.
∠РКЕ = 60°,
∠EKM = ∠РКЕ - ∠1 = 60° - 30° = 30°.
Тогда треугольник КМЕ равнобедренный (∠PEK = ∠EKM = 30°),
КМ = МЕ = 16 см
В прямоугольном треугольнике РКМ напротив угла в 30° лежит катет, равный половине гипотенузы, т.е.
РМ = 1/2 КМ = 8 см
Окружности заключены между параллельными, следовательно их диаметры равны расстоянию между параллельными.
Окружности лежат внутри параллелограмма, следовательно заключены между большими сторонами.
Центры равноудалены от больших сторон => линия центров параллельна большим сторонам параллелограмма.
Данный параллелограмм можно разделить на два ромба.
В ромб можно вписать окружность.
Окружности касаются => внутренняя касательная перпендикулярна линии центров, а значит и большим сторонам параллелограмма.
Ромб с перпендикулярными сторонами - квадрат.
Искомая площадь равна двум квадратам со стороной x.
По теореме Пифагора x=4/√5
S =2*16/5 =6,4
ответ: 28, 19,8
Объяснение:
1. Катет, лежащий напротив угла в 30 градусов равен половине гипотенузы. Следовательно, гипотенуза DE=DF*2=14*2=28 см
2. Угол А= 90- угол В=90-60=30. Катет, лежащий против угла в 30 градусов равен половине гипотенузы. ВС=38/2=19 см
3. ΔКРЕ: ∠Р = 90°, ∠К = 60°, ⇒ ∠Е = 30°.
ΔРКМ: ∠КРМ = 90°, ∠КМР = 60°, ⇒ ∠МКР = 30°.
∠PKM = 30°.
∠РКЕ = 60°,
∠EKM = ∠РКЕ - ∠1 = 60° - 30° = 30°.
Тогда треугольник КМЕ равнобедренный (∠PEK = ∠EKM = 30°),
КМ = МЕ = 16 см
В прямоугольном треугольнике РКМ напротив угла в 30° лежит катет, равный половине гипотенузы, т.е.
РМ = 1/2 КМ = 8 см