Площадь формулы сектора выводится просто. пусть сектор составляет альфа градусов, тогда разбивая его на альфа равных секторов мы получим альфа секторов с углом один градус 360 таких секторов бы дали полную окружность, значит площадь одноградусного сектора равна 1/360 части площади окружности, площадь сектора с углом альфа градусов в альфа раз больше, поэтому равна альфа / 360 * площадь окружности. площадь окружности пи * r^2 окончательно получаем площадь сектора (альфа*пи*r^2)/360 если надо формулу площади сектора где альфа в радианах, то пользуемся тем, что 360 градусов это 2 пи радиан, заменяем 360 в знаменателе на 2 пи и получаем (альфа*пи*r^2)/(2пи) = (альфа*r^2)/2
Допустим, что стороны данного прямоугольника равны х и у. Тогда условие задачи можно записать в виде двух уравнений: 2 * (х + у) = 42, х * у = 110. Из первого уравнения получаем: х + у = 21, у = 21 - х. Подставим это значение у во второе уравнение: х * (21 - х) = 110, 21 * х - х² = 110, х² - 21 * х + 110 = 0. Дискриминант данного квадратного уравнения равен: (-21)² - 4 * 1 * 110 = 441 - 440 = 1. Значит, уравнение имеет следующие решения: х = (21 - 1)/2 = 10 и х = (21 + 1)/2 = 11. Значит у будет равен: у = 21 - 10 = 11 и у = 21 - 11 = 10. ответ: 11 см и 10 см.
пусть сектор составляет альфа градусов, тогда разбивая его на альфа равных секторов мы получим альфа секторов с углом один градус
360 таких секторов бы дали полную окружность, значит площадь одноградусного сектора равна 1/360 части площади окружности, площадь сектора с углом альфа градусов в альфа раз больше, поэтому равна альфа / 360 * площадь окружности.
площадь окружности пи * r^2
окончательно получаем площадь сектора (альфа*пи*r^2)/360
если надо формулу площади сектора где альфа в радианах, то пользуемся тем, что 360 градусов это 2 пи радиан, заменяем 360 в знаменателе на 2 пи и получаем
(альфа*пи*r^2)/(2пи) = (альфа*r^2)/2
2 * (х + у) = 42,
х * у = 110.
Из первого уравнения получаем:
х + у = 21,
у = 21 - х.
Подставим это значение у во второе уравнение:
х * (21 - х) = 110,
21 * х - х² = 110,
х² - 21 * х + 110 = 0.
Дискриминант данного квадратного уравнения равен:
(-21)² - 4 * 1 * 110 = 441 - 440 = 1.
Значит, уравнение имеет следующие решения:
х = (21 - 1)/2 = 10 и х = (21 + 1)/2 = 11.
Значит у будет равен:
у = 21 - 10 = 11 и у = 21 - 11 = 10.
ответ: 11 см и 10 см.
меньшая - 10 см