Задание по геометрии. 1. Постройте треугольник и проведите серединные перпендикуляры каждой стороне;2. Постройте треугольник и проведите биссектрисы его углов
Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. Рассмотрим треугольник АВС. Угол СВН - внешний угол при вершине, противоположной основанию. BM- биссектриса этого угла. Она делит угол на два равных угла 1 и 2. Так как внешний угол при В равен сумме внутренних углов А и С, а треугольник АВС равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. Углы под номером 1-равные соответственные при прямых АС и Bм и секущей АВ Углы под номером 2 -равные накрестлежащие при прямых АС и ВМ и секущей ВС Если при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.
что бы найти площадь равнобедренного треугольника нужна высота. s=ah/2
чертим высоту вн. а высота в равнобедренном треугольнике является медианой и высотой, и делит основание на 2 равные части. значит ан=нс=24: 2=12
нам нужной найти высоту вн
вн можно найти по теореме пифагора, ведь треугольник авн прямоугольный т.к вн является ещё и высотой
вн= корень из ав ²-ан²
вн=корень из 144-169=25 корень из 25 =5
площадь треугольника равна ан/2
а=ан
н=вн
s=5*12/2=30 это площадь треугольника авн а треугольник внс ему равен по 3-м сторонам.
1)ав=вс=13
2)ан=сн=12
3)вн- общая =>
треугольник равны, значит и площади их равны. а площадь треугольника авс=авн+внс
авс=60
ответ : 60 см²
Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. Рассмотрим треугольник АВС. Угол СВН - внешний угол при вершине, противоположной основанию. BM- биссектриса этого угла. Она делит угол на два равных угла 1 и 2. Так как внешний угол при В равен сумме внутренних углов А и С, а треугольник АВС равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. Углы под номером 1-равные соответственные при прямых АС и Bм и секущей АВ Углы под номером 2 -равные накрестлежащие при прямых АС и ВМ и секущей ВС Если при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.