1. Основания трапеции параллельны: AD||BC, тогда можно найти угол ABC, рассматривая его как односторонний с углом BAD в параллельных прямых, пересечённых секущей: ABC = 180° - угол BAD = 130°;
2. Угол ABD = 90°, угол ABC = угол ABD + угол DBC, тогда угол DBC = угол ABC - угол ABD = 130-90 = 40°;
3. Рассмотрим треугольник BCD, он равнобедренный, так как по условию BC = CD, следовательно углы при основании равны: DBC = CDB = 40°;
1. Исходя из свойств трапеции: BC||AM, значит BC||KP, BK и CP - перпендикуляры, тогда BC = KP = 5см;
2. AM = AK + KP + PM; трапеция ABCM - равнобедренная (AB = CM, угол А = углу М), значит AK = PM = x:
AM = 2x + KP 7 = 2x + 5 x=1см;
3. Найдём тупые углы трапеции: ее основания параллельны, а следовательно угол BCM = 180°- угол PMC = 120° (как односторонние углы в параллельных прямых):
4. Угол BCP = 90° (так как угол KPC = 90° = BKP), значит так как угол BCM = BCP + PCM => PCM = BCM - BCP = 120°-90°=30°;
5. Рассмотрим прямоугольный треугольник CPM, по теореме о 30° катет, противолежащий углу в 30° равен половине гипотенузы следует: CM = 2PM = 2см;
P(DKC) = CD + CK + DK P(DKE) = DE + KE + DK как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е 14 = 16 + 18 - 4DK 4DK = 16 + 18 - 14 DK = 5 см Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см. Теперь находим стороны прямоугольника. DС = ЕF = 16 - 5 - 5 = 6 см DE = CF = 18 - 5 - 5 = 8 см Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см
1. Основания трапеции параллельны: AD||BC, тогда можно найти угол ABC, рассматривая его как односторонний с углом BAD в параллельных прямых, пересечённых секущей: ABC = 180° - угол BAD = 130°;
2. Угол ABD = 90°, угол ABC = угол ABD + угол DBC, тогда угол DBC = угол ABC - угол ABD = 130-90 = 40°;
3. Рассмотрим треугольник BCD, он равнобедренный, так как по условию BC = CD, следовательно углы при основании равны: DBC = CDB = 40°;
4. Сумма углов треугольника - 180°, следовательно угол C = 180 - (DBC + CDB) = 180-80 = 100°;
ответ: угол С = 100°
•Задание 5
1. Исходя из свойств трапеции: BC||AM, значит BC||KP, BK и CP - перпендикуляры, тогда BC = KP = 5см;
2. AM = AK + KP + PM; трапеция ABCM - равнобедренная (AB = CM, угол А = углу М), значит AK = PM = x:
AM = 2x + KP
7 = 2x + 5
x=1см;
3. Найдём тупые углы трапеции: ее основания параллельны, а следовательно угол BCM = 180°- угол PMC = 120° (как односторонние углы в параллельных прямых):
4. Угол BCP = 90° (так как угол KPC = 90° = BKP), значит так как угол BCM = BCP + PCM => PCM = BCM - BCP = 120°-90°=30°;
5. Рассмотрим прямоугольный треугольник CPM, по теореме о 30° катет, противолежащий углу в 30° равен половине гипотенузы следует: CM = 2PM = 2см;
ответ: CM = 2 см.
P(DKE) = DE + KE + DK
как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е
14 = 16 + 18 - 4DK
4DK = 16 + 18 - 14
DK = 5 см
Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см.
Теперь находим стороны прямоугольника.
DС = ЕF = 16 - 5 - 5 = 6 см
DE = CF = 18 - 5 - 5 = 8 см
Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см