1. ∆ ABE=∆CDF (треугольники прямоугольные ABE и CDFравны, так как гипотенузы AB = CD и острые углы, угол BAE и угол DCF равны)
Следовательно:
BE = DF
BE || DF, (BE паралельны DF, так как являются перпендикулярыами к одной прямой)
2. AF - биссектриса ∟А, тогда, ∟КAF = ∟ВAF, ∟ВAF = ∟AFD - как внутренние накрест лежащие при параллельных АВ и СD и секущей AF, значит ∟КAF = ∟AFD. ∆ AFD - равнобедренный, AD = FD. Аналогичная ситуация с ∆ ВFС, ВС = FС. AВСD - параллелограмм, поэтому AD = ВС, следовательно FD = FС, F - средина СD
3. Проведём FM параллельно AB (см. рисунок). Тогда CD = AM = MD. Следовательно, параллелограмм DCFM является ромбом. Диагональ CM ромба DCFM является биссектрисой угла BCD.
Высоты проведенные из центра вписанной окружности к сторонам a, b и c являются радиусами этой окружности. Т.е. они равны. Значит, по теореме о соотношении площадей треугольников с равными высотами, S(a):S(b):S(c)=a:b:c=13:14:15⇒ S(a)=13x, S(b)=14x, S(c)=15x
1. ∆ ABE=∆CDF (треугольники прямоугольные ABE и CDFравны, так как гипотенузы AB = CD и острые углы, угол BAE и угол DCF равны)
Следовательно:
BE = DF
BE || DF, (BE паралельны DF, так как являются перпендикулярыами к одной прямой)
2. AF - биссектриса ∟А, тогда, ∟КAF = ∟ВAF, ∟ВAF = ∟AFD - как внутренние накрест лежащие при параллельных АВ и СD и секущей AF, значит ∟КAF = ∟AFD. ∆ AFD - равнобедренный, AD = FD. Аналогичная ситуация с ∆ ВFС, ВС = FС. AВСD - параллелограмм, поэтому AD = ВС, следовательно FD = FС, F - средина СD
3. Проведём FM параллельно AB (см. рисунок). Тогда CD = AM = MD. Следовательно, параллелограмм DCFM является ромбом. Диагональ CM ромба DCFM является биссектрисой угла BCD.
26, 28, 30
Объяснение:
S - площадь данного треугольника
S(a), S(b), S(c) соответственно площади треугольников содержащих сторону a, b и c
a=13, b=14, c=15
p=0,5P=0,5(a+b+c)=0,5(13+14+15)=21
По формуле Герона
S=√(p(p-a)(p-b)(p-c))=√(21(21-13)(21-14)(21-15))=√(21·8·7·6)=√(3²·4²·7²)= =3·4·7=84
Высоты проведенные из центра вписанной окружности к сторонам a, b и c являются радиусами этой окружности. Т.е. они равны. Значит, по теореме о соотношении площадей треугольников с равными высотами, S(a):S(b):S(c)=a:b:c=13:14:15⇒ S(a)=13x, S(b)=14x, S(c)=15x
84=S=S(a)+S(b)+S(c)=13x+14x+15x=42x
42x=84
x=2
S(a)=13x=26, S(b)=14x=28, S(c)=15x=30