Задача имеет решение только если АВСD – четырехугольник, вписанный в окружность. (см. рисунки вложения)
В противном случае величину углов АDC и DCB вычислить невозможно, они могут принимать различное значения, лишь бы их сумма была равна разности между суммой углов четырехугольника и суммой углов АВС и BAD, т.е. 204°
-----------
Четырехугольник можно вписать в окружность, если сумма его противолежащих углов равна 180º.
Задача имеет решение только если АВСD – четырехугольник, вписанный в окружность. (см. рисунки вложения)
В противном случае величину углов АDC и DCB вычислить невозможно, они могут принимать различное значения, лишь бы их сумма была равна разности между суммой углов четырехугольника и суммой углов АВС и BAD, т.е. 204°
-----------
Четырехугольник можно вписать в окружность, если сумма его противолежащих углов равна 180º.
Тогда ∠ADC=180°-∠ABC=180°-96=84°
∠BCD=180°-∠BAD=180°-60°=120°⇒
∠BCD-∠ADC=120°-84°=36°.
Обозначим (начиная с нижнего левого острого угла) по часовой стрелке ABCD.
Тогда AD = 12 см и AB=8 см
Высоты из угла В - на AD - BE и на CD - BF
<EBF = 60
BE - высота, т. е. BE перпендикулярно AD, значит BD перпендикулярно и BC, т.к.
BC параллельно AD, следовательно, < CBE - прямой и <CBF =90 - <EBF =90-60 =30
BF - высота, она перпендикулярна CD, т.е. треугольник BFC - прямоугольный, значит
<BCF = 90 - <CBF = 90 -30 =60
Но <A = < C, значит <A =60 и можем найти высоту BE из треугольника AEB
BE=AB* cos <A
BE = 8*cos 60 = 8* корень(3)/2 = 4*корень(3)
площадь параллелограмма равна произведению основания на высоту
S = AD*BE = 12*4*корень(3) = 48 * корень(3) кв. см
сорок восемь умножить на корень из трех