Задания
1. Точка Т – середина отрезка МР. Найдите координаты точки Т, если Р (8;4) и М (4;-4). (2б)
2. АВ – диаметр окружности с центром О. Найдите координаты окружности, если А(7;-2) и В(-1;-4). (2б)
3. Точки А(2;5), В(2;1), С(8;1) вершины прямоугольного треугольника, где АВ и ВС катеты. Найдите площадь треугольника. (3б)
4. Точки А(-9;1), В(-1;5), С(8;2), D(-6;-5) – вершины прямоугольной трапеции с основаниями АВ и CD. Найдите периметр. (3б)
169-25=144. 144 это 12 в квадрате.) BD=12. А дальше просто по формуле найдем площадь. S= 1/2 a•h S= 1/2 10•12=60
ответ:60 см2.
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.