Дано:аCα, bCβ, α||β Выяснить: a||b - ? a, b - скрещивающиеся - ? Решение: По определению скрещ. прямы а и b могут быть скрещивающимися, только если через них нельзя провести плоскость такую, что а,bC этой плоскости. По аксиомам стереометрии через две прямые можно провести плоскость только если они 1) пересекаются 2) параллельны. Пересекаться они не могут по условию, так как лежать в параллельных плоскостях. Из этого делаем вывод, что а и b - скрещивающиеся, если они не параллельны и параллельны, если они не скрещивающиеся. ответ: а и b - могут быть либо только параллельными, либо только скрещивающимися.
1) Средняя линия треугольника, соединяющая середины двух сторон, параллельна третьей стороне и равна ее половине. В данном треугольнке средняя линия параллельна основанию и равна его половине ⇒ длина основания равна 2*5 = 10 (см)
2) В прямоугольном треугольнике ABC: AB - гипотенуза BC - катет, противолежащий углу 48 градусов AC = 4см, - катет прилежащий углу 48 градусов ∠BAC = 48°
Катет BC можно найти с тангенса известного угла BAC. Тангенсом острого угла прямоугольного треугольника является отношение противолежащего этому углу катета BC к прилежащему AC. BC tg(BAC) = ⇒ BC = AC * tg(BAC) AC
По таблице Брадиса определяем, что тангенсу 48° соответствует величина 1,11061
BC = AC * 1,11061 BC = 4 * 1,11061 = 4, 44244 ≈ 4,5 (cм)
Выяснить: a||b - ? a, b - скрещивающиеся - ?
Решение:
По определению скрещ. прямы а и b могут быть скрещивающимися, только если через них нельзя провести плоскость такую, что а,bC этой плоскости. По аксиомам стереометрии через две прямые можно провести плоскость только если они 1) пересекаются 2) параллельны. Пересекаться они не могут по условию, так как лежать в параллельных плоскостях. Из этого делаем вывод, что а и b - скрещивающиеся, если они не параллельны и параллельны, если они не скрещивающиеся.
ответ: а и b - могут быть либо только параллельными, либо только скрещивающимися.
2) В прямоугольном треугольнике ABC:
AB - гипотенуза
BC - катет, противолежащий углу 48 градусов
AC = 4см, - катет прилежащий углу 48 градусов
∠BAC = 48°
Катет BC можно найти с тангенса известного угла BAC. Тангенсом острого угла прямоугольного треугольника является отношение противолежащего этому углу катета BC к прилежащему AC.
BC
tg(BAC) = ⇒ BC = AC * tg(BAC)
AC
По таблице Брадиса определяем, что тангенсу 48° соответствует величина 1,11061
BC = AC * 1,11061
BC = 4 * 1,11061 = 4, 44244 ≈ 4,5 (cм)