Задания суммативного оценивания за 1 четверть по предмету «Геометрия»
2 вариант
1. Даны прямая РМ, точка F не лежащая на прямой РМ, и точка к, лежащая
на прямой РМ. Каково взаимное расположение прямой РМ и отрезка FK.
[3]
2. При пересечении двух прямых образовались углы найдите градусную
меру всех углов? Если один из них равен 58
[3]
3. Точка K – середина отрезка CD точка M— середина отрезка СК. Найдите
CM, MK, KD если CD — 8 см. .
[2]
4. Начертите неразвернутый угол АОВ шотметьте,
1) две точки КиР внутри этого угла
2) две точки M N вне этого угла
3) две точкин D E на сторонах,
ITTER
, а биссектриса к основанию ( а не к боковой стороне) совпадает с высотой и медианой.
Извините, не прочитал, что в равностороннем. Для равнобедренного рассуждение такое:
Это вытекает из того, что биссектриса делит треугольник на два равных ( по первому признаку, т.е. по двум сторонам и углу между ними). В этих треугольниках напротив равных углов -равные стороны: отрезки на которые биссектриса делит основание. Значит она медиана. Два угла с вершиной на середине основания тоже равны. А так как они смежные т их сумма равна 180 градусам, то и они равны 90 градусам. Значит биссектриса совпадает с высотой
В равностороннем - то же рассуждение для любой стороны.
.
1. поверхность грани 96/4=24 длина стороны основания 24/4=6
апофема равна высоте к стороне основания, апофему обозначим а
0,5*6*а=24 а=24/3=8
2. поверхность 96/3=32 сторона основания 24/3=8
0,5*8*а=32 а=32/4=8
видим равенство апофем, более детально -
пусть n боковых граней, s = 96/n сторона основания 24/n
0.5*24/n*a=96/n 12a=96 a=8
видим, что можно дать другие числа, а не 96 и 24 и посчитать апофему, она не будет зависеть от числа сторон правильной пирамиды, а только от конкретных значений площади боковых граней и периметра основания.