В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
elinanagimova
elinanagimova
13.01.2021 03:00 •  Геометрия

Задания во вложении Вариант Б2


Задания во вложении Вариант Б2

Показать ответ
Ответ:
vhbhvgh
vhbhvgh
04.05.2022 12:35
1) Четырехугольник ADEC - трапеция (DE ║ AC). ∠BAC = ∠BCA ⇒ трапеция равнобедренная, значит, AD = CE = BA - BD = 6.
В трапеции ∠ВАС = ∠BCA  ⇒ и ∠ADE = ∠CED.
ΔADE = ΔCED по двум сторонам и углу между ними (AD = CE, DE - общая, ∠ADE = ∠CED).
2) AD║CF, AC║DF ⇒ ADFC - параллелограмм, значит, ∠DAC = ∠CFE.
∠ACE = ∠FEC как накрест лежащие углы при пересечении AC║DE секущей СЕ. Значит, ΔECF подобен ΔАВС по двум углам.
3) Т.к.  ΔECF подобен ΔАВС, то EF/AC = CE/BC
EF/10 = 6/13  ⇒ EF = 60/13
4) Пусть h - высота треугольника АВС, опущенная на боковую сторону.
Тогда Sabc = 13h/2 = √(p(p - a)(p - b)(p - c), где a, b, c - стороны треугольника АВС, р - его полупериметр
13h/2 = √(18 · 5 · 5 · 8)
13h/2 = √(9 · 2 · 5 · 5 · 4 · 2) = 3 · 5 · 4 = 60
h =120/13
5) AC║DF, значит, расстояние от точки А до DE  и от точки С до DF одинаковы, т.е. ΔADE и ΔDCF имеют одинаковые высоты, опущенные к основаниям DE и DF соответственно. Значит, площади этих треугольников относятся как длины этих оснований.
Sade/Sdcf = DE/DF
DF = AC = 10 как противолежащие стороны параллелограмма,
DE = DF - EF = 10 - 60/13 = 70/13
Sade/Sdcf = (70/13) / 10 = 7/13
0,0(0 оценок)
Ответ:
znmbuzinis
znmbuzinis
07.10.2020 14:37
Такие вот обозначения. CD = z; AD = y; кроме того, из того, что CM - биссектриса, следует, что AC/BC = AM/BM = 5/9; поэтому можно считать AC = 5x; BC = 9x; где x - неизвестная величина.
Из подобия треугольников DCA и DCB (у этих треугольников угол CDA общий, а углы DCA и DBC равны, потому что "измеряются" половиной дуги CA) следует, во-первых, известное соотношение длины касательной.
CD/AD = DB/CD; => CD^2 = AD*BD;
z^2 = y*(y + 28);
во-вторых, AC/AD = BC/CD; то есть
5x/y = 9x/z; откуда z = 9y/5;
Получается y*(9/5)^2 = y + 28; y = 25/2; z = CD = 45/2;

Примечание, можно не читать.
Занятный ответ, причем x "волшебным образом" испарился из уравнений. Похоже, что величины CD = 45/2; и AD = 25/2; постоянны в условии задачи, независимо от длинны сторон AC и BC. То есть вершина C может находится в любой точке окружности Аполония для отрезка AB = 28 и заданной пропорции AC/BC = 5/9; и ответ будет неизменным. Следовательно, есть простой частный случай, с которого можно легко проверить ответ - если выбрать AC перпендикулярным AB.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота