Площадь правильного шестиугольника, вписанного в окружность, равна сумме площадей шести правильных треугольников со сторонами, равными радиусу этой окружности. Тогда площадь одного треугольника равна D/6. По формуле эта площадь равна (√3/4)*a², где а=R. Следовательно, √3*R²/4=D/6 => R²=2D√3/9. R=√(2D√3)/3 По Пифагору квадрат диагонали вписанного квадрата равен (2R)²=2а², где а - сторона квадрата. а=2R/√2 = R√2, а площадь - S= а² =2R² . Подставим найденное значение R, тогда сторона вписанного квадрата: а=√(2D√3/9)*√2=√(4D√3)/3. площадь вписанного квадрата: S=a²= 4D√3/9.
ожидайте результат анализа функции (точки пересечения с осями координат) и график функции под полем задания функции.
При необходимости вы можете построить одновременно графики двух функций онлайн. Для этого нажмите кнопку «Добавить функцию».
В случае построения двух графиков функции будут показаны их точки пересечения.
Таблица обозначений для задания функций
Математическая операция Символ Пример использования
Десятичная дробь Можно и через точку, и через запятую. «2,789» или «2.879»
Сложение «+» x + 1
Вычитание «-» x - 2.5
Умножение «*»(shift + 8) 2 * x
Коэффициент при «x» можно записывать без знака умножения. Например: «2x».
Но при умножении скобок обязательно использовать символ «*».
Правильно: «(2x - 1) * (6.7 - x)».
Деление «/» (знак во на английской раскладке) (x - 1) / 2
Дробь Кнопка «Дробь»
x - 2
10
-
1
2
Модуль Кнопка «Модуль» |x - 2.3|
Возведение в степень Кнопка «Возведение в степень»
или
«^»(shift + 6)
При нажатой кнопке «Возведение в степень» символы попадают в степень. Чтобы вернуться к обычному набору символу, нужно отжать кнопку «Возведение в степень».
Другой задания степени через знак «^». Например: «x^(2)».
Следовательно, √3*R²/4=D/6 => R²=2D√3/9.
R=√(2D√3)/3
По Пифагору квадрат диагонали вписанного квадрата равен
(2R)²=2а², где а - сторона квадрата.
а=2R/√2 = R√2, а площадь - S= а² =2R² .
Подставим найденное значение R, тогда
сторона вписанного квадрата:
а=√(2D√3/9)*√2=√(4D√3)/3.
площадь вписанного квадрата:
S=a²= 4D√3/9.
Чтобы построить график функции онлайн:
укажите функцию в поле выше в виде «y = x2 - 3»;
нажмите кнопку «Построить график функции»;
ожидайте результат анализа функции (точки пересечения с осями координат) и график функции под полем задания функции.
При необходимости вы можете построить одновременно графики двух функций онлайн. Для этого нажмите кнопку «Добавить функцию».
В случае построения двух графиков функции будут показаны их точки пересечения.
Таблица обозначений для задания функций
Математическая операция Символ Пример использования
Десятичная дробь Можно и через точку, и через запятую. «2,789» или «2.879»
Сложение «+» x + 1
Вычитание «-» x - 2.5
Умножение «*»(shift + 8) 2 * x
Коэффициент при «x» можно записывать без знака умножения. Например: «2x».
Но при умножении скобок обязательно использовать символ «*».
Правильно: «(2x - 1) * (6.7 - x)».
Деление «/» (знак во на английской раскладке) (x - 1) / 2
Дробь Кнопка «Дробь»
x - 2
10
-
1
2
Модуль Кнопка «Модуль» |x - 2.3|
Возведение в степень Кнопка «Возведение в степень»
или
«^»(shift + 6)
При нажатой кнопке «Возведение в степень» символы попадают в степень. Чтобы вернуться к обычному набору символу, нужно отжать кнопку «Возведение в степень».
Другой задания степени через знак «^». Например: «x^(2)».
Корень Кнопка
«Корень» 2 √(x - 2) — квадратный корень
3 √(2x - 1) — кубический корень
Синус Кнопка
«Синус» sin(x + 1)
Косинус Кнопка
«Косинус» cos(x)
Тангенс Кнопка
«Тангенс» tg(2.5 - x)
Число π (пи) Кнопка
«Число «Пи» sin(x + π) + 2
Логарифм Кнопка
«Логарифм» log2(2x - 1,4)
Натуральный логарифм Кнопка
«Натуральный логарифм» ln(x) - 2
Десятичный логарифм Кнопка
«Десятичный логарифм» lg(2.3 - x)
Основание натурального логарифма (число Эйлера) Кнопка
«Основание натурального логарифма» ex
Объяснение: