ответ:В задачах этого параграфа двугранный угол с ребром АВ, на разных гранях которого отмечены точки С и D, для краткости будем называть так: двугранный угол CABD.
Дано: ABCD - тетраэдр;
Определим линейную меру двугранного угла DACB.
ADC ⊥ пл. АВС, тогда двугранный угол DACB и соответствующий ему линейный угол DCB равны 90о.
Определим линейную меру двугранного угла DABC.
Проведем отрезок СМ ⊥ АВ, соединим точки М и D.
то по теореме о 3-х перпендикулярах,
По определению, ∠DMC - линейный угол двугранного угла DABC.
ответ:В задачах этого параграфа двугранный угол с ребром АВ, на разных гранях которого отмечены точки С и D, для краткости будем называть так: двугранный угол CABD.
Дано: ABCD - тетраэдр;
Определим линейную меру двугранного угла DACB.
ADC ⊥ пл. АВС, тогда двугранный угол DACB и соответствующий ему линейный угол DCB равны 90о.
Определим линейную меру двугранного угла DABC.
Проведем отрезок СМ ⊥ АВ, соединим точки М и D.
то по теореме о 3-х перпендикулярах,
По определению, ∠DMC - линейный угол двугранного угла DABC.
По теореме Пифагора:
Тогда
Отсюда
Определим линейную меру двугранного угла BDCA.
то ∠АВС - линейный угол двугранного угла
Объяснение:
1) DB - диагональ ромба ⇒ DB биссектриса ∠ADC ⇒ ∠ADB = ∠BDC = 60°
2) ∠DBC = ∠ADB = 60° (тк внутренние накрест лежащие при AD ║ BC и сек. BD)
3) DB - биссектриса ∠ABC (по св-ву диагоналей ромба) ⇒ ∠ABD = ∠DBC = 60°
∠ADB = ∠BDC = ∠ABD = ∠DBC = 60° ⇒ ∠A + ∠C = 360° - ( ∠ADB + ∠BDC + ∠ABD + ∠DBC ) = 360° - 240° = 120° ⇒ ∠A = ∠C (тк ABCD - ромб и параллелограмм, а ∠A и ∠C - противолеж) = 120° : 2 = 60°
ΔADB и ΔDBC - равносторонние (тк их углы равны 60°) ⇒ AB = AD=DC = BC = BD = 3 см
Периметр = AB + AD + DC + BC = 3+3+3+3 = 12 см
ответ: P = 12 см