1) Треугольники SAC=SBC, так как если дае стороны (SB = SA, SC - общая) и угол между ними (<CSB=CSA, так как SC - биссектриса) одного тр-ка равны двум сторонам и углу между ними другого. 2) Хорды DE и PK равны, так как равны треугольники DOE и POK (по тому же признаку: две стороны - радиусы окружности и угол между ними - <POK и <DOC - вертикальные), а в равных тр-ках против равных углов лежат равные стороны. 3) Треугольники PDS и SDR равны по трем сторонам: RS=PS, DP=DR, а DS- общая сторона. Значит <RDS = <PDS (в равных тр-ках против равных сторон лежат равные углы. Три угла <PDR,<RDS и <PDS в сумме равны 360°, значит <RDS = (360°-100°):2 = 130°.
1. Каждый центральный угол соответствует одной стороне. Всего центральных углов
360:20=18
Поэтому у многоугольника 18 сторон.
2. Сумма всех внешних углов любого многоугольника, взятых по одному при каждой вершине, равна 360 градусов. Поэтому в условиях задачи
360:30=12 углов.
3. Каждый внешний угол правильного 12 угольника равен
360:12=30 градусов, а смежный ему внутренний угол равен
180-30=150 градусов.
4. Поскольку все стороны правильного треугольника равны, то они равны
По теореме синусов радиус описанного круга равен
2) Хорды DE и PK равны, так как равны треугольники DOE и POK (по тому же признаку: две стороны - радиусы окружности и угол между ними - <POK и <DOC - вертикальные), а в равных тр-ках против равных углов лежат равные стороны.
3) Треугольники PDS и SDR равны по трем сторонам: RS=PS, DP=DR, а DS- общая сторона. Значит <RDS = <PDS (в равных тр-ках против равных сторон лежат равные углы. Три угла <PDR,<RDS и <PDS в сумме равны 360°, значит <RDS = (360°-100°):2 = 130°.