Все грани прямоугольного параллелепипеда - прямоугольники.
ΔА₁АС: ∠A₁AC = 90°
sinβ = AA₁ / A₁C, ⇒ AA₁ = A₁C · sinβ,
AA₁ = a · sinβ
cosβ = AC / A₁C, ⇒ AC = A₁C · cosβ,
AC = a · cosβ.
Точка пересечения диагоналей прямоугольника является центром описанной окружности. Тогда для окружности, описанной около прямоугольника ABCD ∠АОВ - центральный, а ∠ACB - вписанный, опирающийся на ту же дугу, значит
∠АCB = 1/2 ∠AOB = α/2.
ΔABC: ∠ABC = 90°
sin∠ACB = AB / AC, ⇒ AB = AC · sin∠ACB,
AB = a · cosβ · sin(α/2),
cos∠ACB = BC / AC, ⇒ BC = AC · cos∠ACB,
BC = a · cosβ · cos(α/2).
Sбок = Pосн · AA₁
Sбок = (AB + BC) · 2 · AA₁
Sбок = (a · cosβ · sin(α/2) + a · cosβ · cos(α/2)) · 2 · a · sinβ =
дві прямі в просторі називаються паралельними, якщо вони лежать в одній площині й не перетинаються. прямі, які не лежать в одній площині, називаються мимобіжними. зверніть увагу: «не лежать в одній площині» і «лежать у різних площинах» — це різні твердження. наприклад, паралельні прямі a і b лежать у різних площинах і (див. рисунок), але через них можна провести площину, яка міститиме a і b водночас. image8756image 167 fmt.jpeg
для мимобіжних прямих (див. рисунок) не існує такої площини, у якій вони лежали б водночас. 1.jpeg
можна довести, що всі прямі, які перетинають дві паралельні прямі, лежать в одній площині. теорема. через точку, яка не лежить на даній прямій, можна провести пряму, паралельну даній, і тільки одну.
Объяснение:
Все грани прямоугольного параллелепипеда - прямоугольники.
ΔА₁АС: ∠A₁AC = 90°
sinβ = AA₁ / A₁C, ⇒ AA₁ = A₁C · sinβ,
AA₁ = a · sinβ
cosβ = AC / A₁C, ⇒ AC = A₁C · cosβ,
AC = a · cosβ.
Точка пересечения диагоналей прямоугольника является центром описанной окружности. Тогда для окружности, описанной около прямоугольника ABCD ∠АОВ - центральный, а ∠ACB - вписанный, опирающийся на ту же дугу, значит
∠АCB = 1/2 ∠AOB = α/2.
ΔABC: ∠ABC = 90°
sin∠ACB = AB / AC, ⇒ AB = AC · sin∠ACB,
AB = a · cosβ · sin(α/2),
cos∠ACB = BC / AC, ⇒ BC = AC · cos∠ACB,
BC = a · cosβ · cos(α/2).
Sбок = Pосн · AA₁
Sбок = (AB + BC) · 2 · AA₁
Sбок = (a · cosβ · sin(α/2) + a · cosβ · cos(α/2)) · 2 · a · sinβ =
= a · cosβ(sin(α/2) + cos(α/2)) · 2 · a · sinβ =
= 2a²sinβ·cosβ(sin(α/2) + cos(α/2)) =
= a²sin2β (sin(α/2) + cos(α/2))
ответ:
объяснение:
дві прямі в просторі називаються паралельними, якщо вони лежать в одній площині й не перетинаються. прямі, які не лежать в одній площині, називаються мимобіжними. зверніть увагу: «не лежать в одній площині» і «лежать у різних площинах» — це різні твердження. наприклад, паралельні прямі a і b лежать у різних площинах і (див. рисунок), але через них можна провести площину, яка міститиме a і b водночас. image8756image 167 fmt.jpeg
для мимобіжних прямих (див. рисунок) не існує такої площини, у якій вони лежали б водночас. 1.jpeg
можна довести, що всі прямі, які перетинають дві паралельні прямі, лежать в одній площині. теорема. через точку, яка не лежить на даній прямій, можна провести пряму, паралельну даній, і тільки одну.