Объяснение: рассмотрим ∆АВХ. Он равнобедренный. По условиям АХ=ВХ и так как АХ=4√3, то ВХ=4√3см
Теперь рассмотрим ∆АВС.
Также по условиям ∆АВС- равнобедренный, поскольку АВ=ВС. Зная, что угол АСВ=75°, то угол ВАС, тоже будет 75°; угол АСВ=углу ВАС=75°
Теперь, зная 2 угла при основании, мы можем найти угол В.
Угол В=180-75-75=30°; угол В=30°
Так как ∆АВС равнобедренный, то угол ВАХ=углу УАХ=30°
Зная по условиям, что угол ВАХ=углу УАХ, и так как то они будут каждый по 30°. Теперь рассмотрим ∆САУ. Найдём в нём угол САУ. Зная что угол А=75°, то угол САУ=75-30-30=15°;
Угол САУ=15°. Теперь найдём в этом же треугольнике угол АУС, зная два угла: 180-75-15=90°; угол АУС=90°- это прямой угол, значит ∆САУ-прямоугольный. Теперь рассмотрим ∆АХУ. АУ в нём является стороной, образующей прямой угол, поэтому этот треугольник тоже прямоугольный. В нём катет ХУ лежит против угла 30°, поэтому ХУ= половине гипотенузы=4√3/2=2√3см;
ХУ=2√3. Так как в ∆АХУ мы нашли две стороны, тогда по теореме Пифагора найдём искомую АУ:
ответ: АУ=6см
Объяснение: рассмотрим ∆АВХ. Он равнобедренный. По условиям АХ=ВХ и так как АХ=4√3, то ВХ=4√3см
Теперь рассмотрим ∆АВС.
Также по условиям ∆АВС- равнобедренный, поскольку АВ=ВС. Зная, что угол АСВ=75°, то угол ВАС, тоже будет 75°; угол АСВ=углу ВАС=75°
Теперь, зная 2 угла при основании, мы можем найти угол В.
Угол В=180-75-75=30°; угол В=30°
Так как ∆АВС равнобедренный, то угол ВАХ=углу УАХ=30°
Зная по условиям, что угол ВАХ=углу УАХ, и так как то они будут каждый по 30°. Теперь рассмотрим ∆САУ. Найдём в нём угол САУ. Зная что угол А=75°, то угол САУ=75-30-30=15°;
Угол САУ=15°. Теперь найдём в этом же треугольнике угол АУС, зная два угла: 180-75-15=90°; угол АУС=90°- это прямой угол, значит ∆САУ-прямоугольный. Теперь рассмотрим ∆АХУ. АУ в нём является стороной, образующей прямой угол, поэтому этот треугольник тоже прямоугольный. В нём катет ХУ лежит против угла 30°, поэтому ХУ= половине гипотенузы=4√3/2=2√3см;
ХУ=2√3. Так как в ∆АХУ мы нашли две стороны, тогда по теореме Пифагора найдём искомую АУ:
АУ=(4√3)²-(2√3)²=√(16×3)-√(4×3)=
=√(48-12)=√36=6см; АУ=6см
Прямоугольная трапеция.
Основания (трапеции) = 12 см и 16 см.
Боковая сторона = 5 см.
Найти:S (трапеции) = ? см².
Решение:Обозначим прямоугольную трапецию буквами ABCD.
AD - меньшее основание, BC - большее основание.
Так как любая наклонная > перпендикуляра ⇒
DC - большая боковая сторона, AB - меньшая боковая сторона, а также высота данной прямоугольной трапеции.
Проведём из точки D к большему основанию BC прямоугольной трапеции ABCD перпендикуляр DE. Этот перпендикуляр - высота.
CE = BC - AD = 16 - 12 = 4 см.
Найдём высоту DE по теореме Пифагора (a = √(b² - c²), где a и b - катеты, c - гипотенуза):
DE = √(DC² - CE²) = √(5² - 4²) = √(25 - 16) = √9 = 3 см.
⇒ S трапеции ABCD = (AD + BC)/2 * DE = (12 + 16)/2 * 3 = 42 см².
ответ: S трапеции ABCD = 42 см².