1) Назовем треуг. АBC. Рассмотрим его. Трег. равнобедр. значит его бок.стороны по 13 см. Проведем высоту из вершины В( не из основания, а из верхнего угла треуг.) Высота по св-тву равнобедр. треуг. явл. медианой и биссек. Значит высота ВD поделит основание АС на равные части( 10:2=5). Рассмотрим треуг. АВD. BD- катет, значит найдем его по теореме Пифагора. ( 13-5 возведем в квадрат: 169-25=144. 144 это 12 в квадрате.) BD=12. А дальше просто по формуле найдем площадь. S= 1/2 a•h S= 1/2 10•12=60 ответ:60 см2.
Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
169-25=144. 144 это 12 в квадрате.) BD=12. А дальше просто по формуле найдем площадь. S= 1/2 a•h S= 1/2 10•12=60
ответ:60 см2.
∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а
∠DBC = ∠ABD; так как BD - биссектриса
получилось, что треугольник AKB - равнобедренный.
Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K.
Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.