AO - радиус окружности, описанной вокруг основания правильной треугольной пирамиды
SKO - двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)
Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).
Свойства правильной треугольной пирамиды:
боковые ребра правильной пирамиды равны
все боковые грани правильной пирамиды являются равнобедренными треугольниками
в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу
если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).
площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан
1)Тут такая штука. Центр описанной окружности - это середина гипотенузы. Из этой середины опустить перпендикуляр на известный катет и получится Δ, в котором один катет = 2,5, другой = 6, а гипотенузу (R) надо искать . По т. Пифагора R² = 6² + 2,5² = 36 + 6,25 = 42,25 ⇒ R = 6,5 r = 2. Решение во вложении.
2) Чтобы построить график, надо понять: если бы не было записей х≥ -5 и х меньше 5, то на координатной плоскости появились бы парабола у = х² +8х + 10 и прямая у = х (это, кстати, биссектриса 1 и 3 четвертей).. А ограничения говорят о том, что на одной части координатной плоскости кусок параболы, а на другой- кусок биссектрисы.
На рисунке обозначены:
ABC - Основание пирамиды
OS - Высота
KS - Апофема
OK - радиус окружности, вписанной в основание
AO - радиус окружности, описанной вокруг основания правильной треугольной пирамиды
SKO - двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)
Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).
Свойства правильной треугольной пирамиды:
боковые ребра правильной пирамиды равны
все боковые грани правильной пирамиды являются равнобедренными треугольниками
в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу
если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).
площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан
r = 2. Решение во вложении.
2) Чтобы построить график, надо понять: если бы не было записей х≥ -5 и х меньше 5, то на координатной плоскости появились бы парабола у = х² +8х + 10 и прямая у = х (это, кстати, биссектриса 1 и 3 четвертей)..
А ограничения говорят о том, что на одной части координатной плоскости кусок параболы, а на другой- кусок биссектрисы.