Поскольку у параллелограмма КMNP противоположные стороны параллельны и равны, противоположные углы равны, значит КР=MN и КР║MN КМ=NР и КМ║NР ∠К=∠N ∠М=∠Р
Рассмотрим треугольники КВР и МNА. KB=NA - это дано по условию задания. КР=MN - это мы выяснили выше ∠K=∠N - это мы выяснили выше А эти равности дают нам право утверждать, что треугольник КВР=треугольнику МNА. А это означает, что BP=MA. Также из равности треугольников можно утверждать, что ∠KBP=∠NAM ∠BPK=∠AMN.
Сумма мер двух смежных углов равна 180°, значит ∠MBP+∠KBP=180°, отсюда ∠MBP=180° - ∠KBP ∠PAM+∠NAM=180°, отсюда ∠PAM=180° - ∠NAM
Поскольку ∠KBP=∠NAM, а значит ∠MBP=∠PAM
Поскольку ∠BPK=∠AMN и ∠KMN=∠KPN, тогда ∠KMA=∠NPB, так как ∠KMN=∠KMA+∠AMN, отсюда ∠KMA=∠KMN-∠AMN ∠KPN=∠BPK+∠NPB, отсюда ∠NPB=∠KPN-∠BPK
KM=KB+МB, отсюда MB=KM-KB NP=NA+AP, отсюда AP=NP-NA Поскольку KM=NP, а KB=NA, значит MB=AP. Поскольку KM║NP, то и MB║AP.
Получаеться, мы выяснили, что BP=MA ∠MBP=∠PAM ∠KMA=∠NPB MB=AP MB║AP.
Из всего этого мы можем сделать вывод, что АМВР - это параллелограмм, поскольку у него противоположные стороны и углы равны.
Биссектриса параллелограмма отсекает от него равнобедренный треугольник. Это свойство основано на равенстве накрестлежащих углов при пересечении параллельных прямых (стороны параллелограмма) секущей ( биссектриса) Пусть биссектриса угла А будет АМ, угла В - ВК. Угол ВАМ=углу АМD как накрестлежащие, Но ВАМ=МАD как равные половины угла А. Поэтому в ∆ АDM углы при АМ равны, и он - равнобедренный. DM=AD=5см На том же основании ВК отсекает равнобедренный ∆ ВСК. где СК=ВС=5 см СD=AB=12 см Тогда на стороне CD отрезки DМ=5 см, СК=5 см, МК=12-(5+5)=2 см
КР=MN и КР║MN
КМ=NР и КМ║NР
∠К=∠N
∠М=∠Р
Рассмотрим треугольники КВР и МNА.
KB=NA - это дано по условию задания.
КР=MN - это мы выяснили выше
∠K=∠N - это мы выяснили выше
А эти равности дают нам право утверждать, что треугольник КВР=треугольнику МNА.
А это означает, что BP=MA.
Также из равности треугольников можно утверждать, что
∠KBP=∠NAM
∠BPK=∠AMN.
Сумма мер двух смежных углов равна 180°, значит
∠MBP+∠KBP=180°, отсюда ∠MBP=180° - ∠KBP
∠PAM+∠NAM=180°, отсюда ∠PAM=180° - ∠NAM
Поскольку ∠KBP=∠NAM, а значит
∠MBP=∠PAM
Поскольку ∠BPK=∠AMN и ∠KMN=∠KPN, тогда
∠KMA=∠NPB, так как
∠KMN=∠KMA+∠AMN, отсюда ∠KMA=∠KMN-∠AMN
∠KPN=∠BPK+∠NPB, отсюда ∠NPB=∠KPN-∠BPK
KM=KB+МB, отсюда MB=KM-KB
NP=NA+AP, отсюда AP=NP-NA
Поскольку KM=NP, а KB=NA, значит
MB=AP.
Поскольку KM║NP, то и MB║AP.
Получаеться, мы выяснили, что
BP=MA
∠MBP=∠PAM
∠KMA=∠NPB
MB=AP
MB║AP.
Из всего этого мы можем сделать вывод, что АМВР - это параллелограмм, поскольку у него противоположные стороны и углы равны.
Пусть биссектриса угла А будет АМ, угла В - ВК.
Угол ВАМ=углу АМD как накрестлежащие, Но ВАМ=МАD как равные половины угла А. Поэтому в ∆ АDM углы при АМ равны, и он - равнобедренный. DM=AD=5см
На том же основании ВК отсекает равнобедренный ∆ ВСК. где СК=ВС=5 см
СD=AB=12 см
Тогда на стороне CD отрезки
DМ=5 см, СК=5 см, МК=12-(5+5)=2 см