Если стороны образуют арифметическую прогрессию, то их длины: c b=c+d a=b+d=c+2d Угол в 120° является наибольшим. Поэтому напротив него лежит наибольшая сторона. Воспользуемся теоремой косинусов: a²=b²+c²-2bc cos120° (c+2d)²=(c+d)²+c²-2(c+d)c*(-0.5) c²+4cd+4d²=c²+2cd+d²+c²+c²+cd 4cd+4d²=3cd+d²+2c² 3d²+cd-2c²=0 Решаем получившееся квадратное уравнение относительно d: D=c²-4*3(-2c²)=c²+24c²=25c² √D=5c d=(-c+5c)/(2*3)=2c/3 (Отрицательные значения корня не рассматриваем, исходя из геометрического смысла) Следовательно, длины сторон: с b=c+2c/3=5c/3 a=c+2*2c/3=7c/3 Тогда искомое отношение сторон с:b:a=c:5c/3:7c/3=3:5:7 ответ: 3:5:7
Для начала заметим, что угол OMQ=90°, так как ОВСQ - прямоугольная трапеция (ОВ||QC), значит в ней <O+<Q=180°, а ОМ и МQ - биссектрисы этих углов, тогда их половины в сумме равны 90° и <OMQ=90°). МА - высота из прямого угла и по ее свойствам МА²=ОА*АQ или 36=4*АQ. Отсюда АQ= 9. А это и есть радиус второй окружности. Рассмотрим прямоугольный треугольник ОВМ. По Пифагору ОМ=√(ОВ²+ВМ²)=√(16+36)=√52.(ВМ=МА=МС - как касательные из одной точки к окружности). ВН - тоже высота из прямого угла и по ее свойствам (h=a*b/c) получим ВН=4*6/√52. ВА=2*ВН=48/√52. Если из точки к окружности проведены касательная и секущая, то квадрат отрезка касательной от данной точки до точки касания равен произведению длин отрезков секущей от данной точки до точек её пересечения с окружностью. то есть ВС²=BD*BA. Или BD=ВС²/BA. ВС = ВМ+МС=12 (так как ВМ=АМ и МС=АМ - касательные из одной точки к окружности).BD = 144:ВА= 144:(48/√52) = 6√13. ответ: радиус второй окружности равен 9. Отрезок ВD=6√13. P.S. Проверьте арифметику.
c
b=c+d
a=b+d=c+2d
Угол в 120° является наибольшим. Поэтому напротив него лежит наибольшая сторона.
Воспользуемся теоремой косинусов:
a²=b²+c²-2bc cos120°
(c+2d)²=(c+d)²+c²-2(c+d)c*(-0.5)
c²+4cd+4d²=c²+2cd+d²+c²+c²+cd
4cd+4d²=3cd+d²+2c²
3d²+cd-2c²=0
Решаем получившееся квадратное уравнение относительно d:
D=c²-4*3(-2c²)=c²+24c²=25c²
√D=5c
d=(-c+5c)/(2*3)=2c/3
(Отрицательные значения корня не рассматриваем, исходя из геометрического смысла)
Следовательно, длины сторон:
с
b=c+2c/3=5c/3
a=c+2*2c/3=7c/3
Тогда искомое отношение сторон
с:b:a=c:5c/3:7c/3=3:5:7
ответ: 3:5:7
Рассмотрим прямоугольный треугольник ОВМ. По Пифагору ОМ=√(ОВ²+ВМ²)=√(16+36)=√52.(ВМ=МА=МС - как касательные из одной точки к окружности). ВН - тоже высота из прямого угла и по ее свойствам (h=a*b/c) получим ВН=4*6/√52. ВА=2*ВН=48/√52.
Если из точки к окружности проведены касательная и секущая, то квадрат отрезка касательной от данной точки до точки касания равен произведению длин отрезков секущей от данной точки до точек её пересечения с окружностью. то есть ВС²=BD*BA. Или BD=ВС²/BA. ВС = ВМ+МС=12 (так как ВМ=АМ и МС=АМ - касательные из одной точки к окружности).BD = 144:ВА= 144:(48/√52) = 6√13.
ответ: радиус второй окружности равен 9. Отрезок ВD=6√13.
P.S. Проверьте арифметику.