(запишите краткое условие, выполните чертеж, запишите основной ход решения, используемые формулы и итоговый ответ. Разрешено использовать таблицы Брадиса. Дополнительные вычисления выполните на черновике) Решите треугольник С
Чтобы построить точку М, симметричную точке О относительно ВС, проведем луч с началом в точке О перпендикулярно ВС. Пусть Н - точка пересечения этого луча со стороной ВС. Отложим на луче отрезок НМ, равный отрезку ОН. Точка М построена. OM║CD как перпендикуляры к одной прямой. О - середина BD ⇒ ОН средняя линия ΔCBD. ОН = CD/2 = 3 cм. НМ = ОН = 3 см по построению. Итак, OM║CD, OM = CD ⇒MОDС - параллелограмм.
ΔABD: ∠A = 90°, по теореме Пифагора BD = √(AB² + AD²) = √(64 + 36) = √100 = 10 (см) OD = BD/2 = 5 см Рmodc = 2(OD + DC) = 2(5 + 6) = 22 см
ответ:
объяснение:
1. рассмотрим параллелограмм авсд.
s=ah, а= 6 это следует h=4
2.рассмотрим δ аве, в=5, h=4. тогда по теореме пифагора
хво2степени =5 в степени2 - 4 в степени2 =9
х=3, т.е. ае=дк=3, это следует
3. ед=ад-ае=3
4. рассмотрим δвед, по теореме пифагора следует
хво 2 степени=3во 2степени+4во второй степени=25
×=5,т.е. вд=5
5.проведем дополнительную высоту ск с вершины с и соединяем с основанием ад
6. рассмотрим δ аск, ак=9, ск=4⇒ по теореме пифагора
хво 2степени=9во2степени+4 во 2степени=97
×=√97, т.е. ас=√97
OM║CD как перпендикуляры к одной прямой. О - середина BD ⇒
ОН средняя линия ΔCBD. ОН = CD/2 = 3 cм.
НМ = ОН = 3 см по построению.
Итак, OM║CD, OM = CD ⇒MОDС - параллелограмм.
ΔABD: ∠A = 90°, по теореме Пифагора
BD = √(AB² + AD²) = √(64 + 36) = √100 = 10 (см)
OD = BD/2 = 5 см
Рmodc = 2(OD + DC) = 2(5 + 6) = 22 см