1. Если две плоскости имеют общую точку, то они имеют общую прямую. 2. Две плоскости не параллельны, если имеют общую прямую (пересекаются). 3. Если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в этой плоскости, то она параллельна данной плоскости. 4. Если две пересекающиеся прямые одной плоскости параллельны двум прямым другой плоскости, то эти вторые прямые являются пересекающимися. 5. Через точку, не принадлежащую данной плоскости, проходит единственная плоскость параллельная данной плоскости.
Площадь прямоугольника равна произведению длин его смежных сторон.
Пусть стороны прямоугольника а и b, а его площадь равна S,
Докажем, что S=ab
Достроим прямоугольник до квадрата, длина стороны которого равна сумме длин сторон данного прямоугольника, т.е. а+b ( см. рисунок, данный в приложении)
Площадь квадрата равна квадрату его стороны
S(кв)=(a+b)²=a²+2ab+b²
В то же время площадь этого достроенного квадрата состоит из суммы площадей двух меньших квадратов, чьи площади равны а² и b², и площадей двух прямоугольников со сторонами а и b, чью площадь мы приняли равной S.
2. Две плоскости не параллельны, если имеют общую прямую (пересекаются).
3. Если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в этой плоскости, то она параллельна данной плоскости.
4. Если две пересекающиеся прямые одной плоскости параллельны двум прямым другой плоскости, то эти вторые прямые являются пересекающимися.
5. Через точку, не принадлежащую данной плоскости, проходит единственная плоскость параллельная данной плоскости.
Площадь прямоугольника равна произведению длин его смежных сторон.
Пусть стороны прямоугольника а и b, а его площадь равна S,
Докажем, что S=ab
Достроим прямоугольник до квадрата, длина стороны которого равна сумме длин сторон данного прямоугольника, т.е. а+b ( см. рисунок, данный в приложении)
Площадь квадрата равна квадрату его стороны
S(кв)=(a+b)²=a²+2ab+b²
В то же время площадь этого достроенного квадрата состоит из суммы площадей двух меньших квадратов, чьи площади равны а² и b², и площадей двух прямоугольников со сторонами а и b, чью площадь мы приняли равной S.
Отсюда
a²+2ab+b²=а²+b²+S+S ⇒
2ab=2S.
Следовательно,
S=ab.