Эта задача на много проще, чем кажется. Если из центра окружности (который лежит на гипотенузе) опустить перпендикуляры на катеты, то получится квадрат и два треугольника, подобных исходному. Если обозначить радиус окружности r, больший катет большего треугольника b, меньший катет меньшего треугольника a, то стороны исходного треугольника будут такие (a + r, b + r, 35) стороны меньшего треугольника (a, r, 15) стороны большего (r, b, 20) и все эти три треугольника подобны между собой. отсюда a/r = 15/20 = 3/4; то есть все эти три треугольника - египетские (подобные треугольнику со сторонами 3, 4, 5) То есть уже можно написать ответ :) вычислять уже ничего не надо, надо просто "подобрать" коэффициенты подобия, чтобы гипотенузы египетских треугольников были бы 15 и 20. Само собой, это 3 и 4. То есть a = 9, r = 12, b = 16; (получились треугольники 9, 12, 15 и 12, 16, 20) Исходный треугольник имеет стороны 21, 28, 35, его площадь 294; длина полуокружности πr = 12π;
Весь "трюк" в том, что r - одновременно больший катет в одном из подобных треугольников и меньший - в другом.
Если из центра окружности (который лежит на гипотенузе) опустить перпендикуляры на катеты, то получится квадрат и два треугольника, подобных исходному. Если обозначить радиус окружности r, больший катет большего треугольника b, меньший катет меньшего треугольника a,
то стороны исходного треугольника будут такие
(a + r, b + r, 35)
стороны меньшего треугольника
(a, r, 15)
стороны большего
(r, b, 20)
и все эти три треугольника подобны между собой.
отсюда a/r = 15/20 = 3/4;
то есть все эти три треугольника - египетские (подобные треугольнику со сторонами 3, 4, 5)
То есть уже можно написать ответ :) вычислять уже ничего не надо, надо просто "подобрать" коэффициенты подобия, чтобы гипотенузы египетских треугольников были бы 15 и 20. Само собой, это 3 и 4.
То есть a = 9, r = 12, b = 16; (получились треугольники 9, 12, 15 и 12, 16, 20)
Исходный треугольник имеет стороны 21, 28, 35, его площадь 294;
длина полуокружности πr = 12π;
Весь "трюк" в том, что r - одновременно больший катет в одном из подобных треугольников и меньший - в другом.
Отношение высот параллелограмма равно 3:4, а сумма этих высот - 63. Найди площадь параллелограмма, если его периметр равен 42.
Объяснение:
1) Пусть одна часть высоты х ед, тогда большая высота 4х ед , меньшая высота 3х ед. Сумма длин высот 63=4х+3х ⇒х=9.
Тогда большая высота 4*9=36 (ед) , меньшая 27 ед.
2) Р(параллелограмма)= 42 ед, полупериметр 21 ед.
Найдем стороны параллелограмма.
Пусть меньшая сторона у ед, тогда большая (21-у) ед.
Значение площади не изменится если искать площадь по разным основаниям S=a*h :
S=y*36 или S=(21-y)*27 ⇒ 36y= (21-y)*27 , 63y=21*27 ,y=9.
S=9*36=324(ед²).