Задача 1. 1)Найдем объем призмы по формуле V=S•h , где S-площадь основания. Sоснования=1/2аb, где а=6, а b=8. Sосн.=48/2=24 см^2. Т.к. призма прямая, то h=боковому ребру=12. V=24•12=288 см^3. 2)Sполн.=сумме всех площадей поверхности=2Sосн.+S1бок+ S2бок+S3бок. Sосн=24 см^2. Найдем S1бок. Т.к. боковая сторона это прямоугольник, то S=ab, где a-длина, а b-ширина прямоугольника. а=12 см, b=8 см, S1бок=12•8=96 см^2, S2бок.=12•6=72см^2. Чтобы найти S3бок, найдем b по теореме Пифагора: √6^2+8^2=√100=10 см. S3бок=12•10=120см^2. Найдем Sполн.=2•24+96+72+120=336см^2. | ответ: Sполн=336 см^2, V=288см^3.
1). Построим описанную окружность с центром в т. М Угол ∠АМС - центральный, опирающийся на ту же дугу АС, что и угол ∠АВС. Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4 CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC => => BC = 2MC*cos15°
Угол ∠АМС - центральный, опирающийся на ту же дугу АС,
что и угол ∠АВС.
Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4
CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC =>
=> BC = 2MC*cos15°
В ΔМНС: МН = МС*cos30° = MC*√3/2
Тогда: