Биссектриса угла - это геометрическое место точек внутри угла, равноудаленных от сторон угла. Точка К лежит на биссектрисе ВМ прямого угла, следовательно, перпендикуляры из точки К на стороны АВ и ВС будут равны. Пусть они будут равны Х. Из прямоугольных треугольников АКЕ и СКР по Пифагору найдем АК и КС: АК=√[(4-Х)²+Х²], а KC=√[(3-Х)²+Х²]. По условию АК = КС, значит и АК² = КС². 16-8Х+Х²+Х² = 9-6Х+Х²+Х², или 16-8Х = 9-6Х, откуда Х=3,5. Найдем BK из прямоугольного равнобедренного треугольника с катетами Х = 3,5. ВК = √(Х²+Х²) = 3,5*√2. ответ: ВК = 3,5*√2 ≈ 4,95.
Подкорректируем рисунок, чтобы он соответствовал решению (зеленые и красные линии) АЕ = АВ-Х =4-3,5=0,5. СР=ВР-ВС=3,5-3=0,5.
радиус окружности описанной возле правильного треугольника находится по формуле : R=корень из 3 делить на три и умноженный на сторону треугольника
R=корень из 3 деленный на три умножаем на 4 корня из 6
R=корень из 288 деленного на 3
R=12 корней из 2 и все это делить на 3
R=4 корня из 2
далее находим сторону квадрата вписанного в эту же окружности
радиус окружности треугольника равен радиусу окружности квадрата
радиус квадрата равен R=корень из 2 деленный на 2 и все это умножить на сторону квадрата (t)
выражаем t из этой формулы получаем
t= R делить на корень из 2 деленный на 2
t=4корня из 2 делить на корень из 2 деленный на 2
t=8 см
ответ: 8 см.
Точка К лежит на биссектрисе ВМ прямого угла, следовательно, перпендикуляры из точки К на стороны АВ и ВС будут равны. Пусть они будут равны Х.
Из прямоугольных треугольников АКЕ и СКР по Пифагору найдем АК и КС:
АК=√[(4-Х)²+Х²], а KC=√[(3-Х)²+Х²].
По условию АК = КС, значит и АК² = КС².
16-8Х+Х²+Х² = 9-6Х+Х²+Х², или 16-8Х = 9-6Х, откуда Х=3,5.
Найдем BK из прямоугольного равнобедренного треугольника с катетами
Х = 3,5.
ВК = √(Х²+Х²) = 3,5*√2.
ответ: ВК = 3,5*√2 ≈ 4,95.
Подкорректируем рисунок, чтобы он соответствовал решению (зеленые и красные линии) АЕ = АВ-Х =4-3,5=0,5. СР=ВР-ВС=3,5-3=0,5.