Заполните пробелы,это !
два перпендикулярных отрезка km и ln пересекаются в общей серединной точке p.
какой величины∡ n и ∡ k, если ∡ l = 85° и ∡ m = 5°?
1. отрезки делятся пополам, значит, kp == lp,
∡ = ∡ mpl, так как прямые перпендикулярны и оба угла °.
по первому признаку равенства треугольник kpn равен треугольнику mpl.
2. в равных треугольниках соответствующие углы равны.
в этих треугольниках соответствующие ∡
и ∡ m, ∡ и∡ l.
∡ k =°;
∡ n =°.
равнобедренный ΔАОС (О - центр основания конуса): АО=ОС=R, <AOC=120°, <OAC=<OCA=30°, OM_|_AC, ОМ - высота, медиана ΔАОС, ⇒АМ=3√3.
tg30°=OM:AM.
по условию, секущая плоскость составляет с плоскостью основания угол 45°, ⇒ линейный угол ВАСМ - угол ВМО=45°. высота конуса Н=ОМ=3
ответ: Vк=20,25π
2. MABCD - правильная пирамида с диагональю основания АС=d, угол между боковым ребром МА и плоскостью основания <MAC= α
MO_|_(MABCD), МО - высота пирамиды.
прямоугольный ΔМОА: ОА=d/2, <A=α. tgα=MO:OA, MO=tgα*OA
MO=d*tgα/2
Vпир=(1/3)*Sосн*H
Sосн=a², a- сторона основания пирамиды
диагональ пирамиды найдена по теореме Пифагора из ΔАВС: АС²=АВ²+АС²
АВ=АС=а
d²=a²+a², d²=2a². d=a√2, ⇒a=d/√2
S=(d/√2)²=d²/2
Vпир=(1/3)*(d²/2)*(d*tgα/2)
Vпир=(d³ *tgα)/12
Пересечение двух прямых образует вертикальные углы. По свойству вертикальных углы равны между собой. Значит 2 противоположных угла буду равны между собой и равны 21°.
Сумма 4-х вертикальных углов, образованных пересечением 2-х прямых равна 360°.
Пэтому сумма 2-х других углов равна:
(360° - 2 * 21) / 2 = 159°.
или
Допустим, пересеклись прямые AB и CD в точке O (это писать не нужно, просто обозначить на рисунке)
Дано: ∠AOD = 21°.
Найти: ∠AOC, ∠COB, ∠DOB.
∠COB = ∠AOD = 21° как вертикальные.
∠AOC = 180° - ∠AOD = 180° - 21° = 159° как смежные.
∠DOB = ∠AOC = 159° как вертикальные.
ответ: ∠AOC = ∠DOB = 159°, ∠COB = 21°.