2. Рассмотрим прямоугольный треугольник ACD, по теореме об угле в 30° (угол, противолежащий углу в 30° равен половине гипотенузы) CD = AC/2 = 12/2 = 6см;
1. По условию фигура ABCD - прямоугольник, но так как дано, что BC = AB следует, что ABCD - квадрат;
2. P=28см, периметр квадрата равняется сумме всех его сторон, то есть P(ABCD) = 4AB (так как все 4 стороны равны), то есть 28 = 4AB, следовательно AB = 7см. Так как ABCD - квадрат и все его стороны равны: AB = BC = CD = AD = 7 см;
3. S(ABCD) = AB в квадрате = 49 сантиметров квадратных;
ответ: S(ABCD) = 49 сантиметров квадратных.
•Задание 8
1. Исходя из данных выражений составим систему:
AB = 3BC AB-BC = 12
Подставим значение AB из первого выражения:
3BC - BC = 12 2BC = 12 BC = 6см, тогда AB=3BC = 18 сантиметрам;
2. S(ABCD) = AB • BC = 18 • 6 = 108 сантиметров квадратных;
Для вирішення цього завдання, спочатку знайдемо більшу основу трапеції, використовуючи властивість, що коло вписане в прямокутну трапецію розташоване на серединній лінії.
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції: Р = (6 + х) / 2, де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння: 4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2: 8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння: х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції: S = (a + b) * h / 2, де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола): S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
1. S(ABCD) = BC•CD = 6•3 = 18 квадратных сантиметров;
ответ: S(ABCD) = 18 квадратных сантиметров.
•Задание 6
1. Фигура ABCD - прямоугольник, следовательно все углы равняются 90°. Рассмотрим треугольник ACD - прямоугольный, так как угол ADC = 90°, угол ACD = 60°, следовательно угол CAD = 90° - угол ACD = 30°;
2. Рассмотрим прямоугольный треугольник ACD, по теореме об угле в 30° (угол, противолежащий углу в 30° равен половине гипотенузы) CD = AC/2 = 12/2 = 6см;
3. S(ABCD) = AD•CD = 10•6 = 60 квадратных сантиметров;
ответ: S(ABCD) = 60 квадратных сантиметров.
•Задание 7
1. По условию фигура ABCD - прямоугольник, но так как дано, что BC = AB следует, что ABCD - квадрат;
2. P=28см, периметр квадрата равняется сумме всех его сторон, то есть P(ABCD) = 4AB (так как все 4 стороны равны), то есть 28 = 4AB, следовательно AB = 7см. Так как ABCD - квадрат и все его стороны равны: AB = BC = CD = AD = 7 см;
3. S(ABCD) = AB в квадрате = 49 сантиметров квадратных;
ответ: S(ABCD) = 49 сантиметров квадратных.
•Задание 8
1. Исходя из данных выражений составим систему:
AB = 3BC
AB-BC = 12
Подставим значение AB из первого выражения:
3BC - BC = 12
2BC = 12
BC = 6см, тогда AB=3BC = 18 сантиметрам;
2. S(ABCD) = AB • BC = 18 • 6 = 108 сантиметров квадратных;
ответ: S(ABCD) = 108 сантиметров квадратных.
Радіус кола, яке вписане в трапецію, дорівнює половині суми довжин основ. Таким чином, радіус кола становить половину суми меншої і більшої основ трапеції:
Р = (6 + х) / 2,
де х - довжина більшої основи трапеції.
Ми знаємо, що радіус кола дорівнює 4 см, тому можемо записати рівняння:
4 = (6 + х) / 2.
Щоб знайти х, спочатку помножимо обидві частини рівняння на 2:
8 = 6 + х.
Потім віднімемо 6 від обох боків рівняння:
х = 8 - 6 = 2.
Тепер, коли відомі довжини основ трапеції, можемо обчислити її площу. Формула для обчислення площі прямокутної трапеції:
S = (a + b) * h / 2,
де a і b - довжини основ, h - висота трапеції.
Застосуємо цю формулу, використовуючи a = 6 см, b = 2 см (знайдену довжину більшої основи) і h = 4 см (радіус кола):
S = (6 + 2) * 4 / 2 = 8 * 4 / 2 = 16 см².
Отже, площа трапеції дорівнює 16 см².