В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
erlan002
erlan002
20.12.2021 02:11 •  Геометрия

Заранее всех, кто уделит внимание этой , знаю лишь, что стоит решать ее через теорему менелая. медиана bm и биссектриса ap треугольника abc пересекаются в точке k, длина стороны ac относится к длине стороны ab как 9: 7, найдите отношение площади четырехугольника kpcm к площади треугольника abc

Показать ответ
Ответ:
aldeerGroMo
aldeerGroMo
02.10.2020 15:24
Можно и без Менелая. Если воспользоваться следующим очевидным фактом. Если отрезок, соединяющий вершину треугольника с противоположной стороной делит эту сторону на части, которые относятся как а:b, то площади получившихся двух треугольников тоже относятся как a:b (это потому что у этих треугольников общая высота).  Пользуясь этим, получим:
1) Т.к. AP - биссектриса, то BP/PC=7/9 и значит S(KPB)=7x, S(KPC)=9x.
2) Т.к. BM - медиана, то S(AKM)=S(KMC)=y и S(ABK)=S(KBC)=9x+7x=16x.
3) Опять по свойству биссектрисы S(ABP)/S(APC)=7/9=(16x+7x)/(2y+9x). Отсюда y=72x/7.
4) S(ABC)=32x+2y=368x/7 и S(KPCM)=9x+y=135x/7
Значит S(KPCM)/S(ABC)=135/368.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота