8. На первом рисунке прямоугольный треугольник, сумма углов при катетах равна 90, значит, угол А равен 90-23=67. На втором равнобедренный, углы при основе равные, значит угол С=57. Находим А, так как сумма углов треугольника равна 180, то угол А= 180-(уголВ+уголС)=180-(57+57)=56 градусов. На третьем рисунке сумма углов треуголника равна 180, значит угол А=180-(100+55)=25 градусов. в итоге, больше всего градусов имеет угол А на первом рисунке))
8. На первом рисунке прямоугольный треугольник, сумма углов при катетах равна 90, значит, угол А равен 90-23=67. На втором равнобедренный, углы при основе равные, значит угол С=57. Находим А, так как сумма углов треугольника равна 180, то угол А= 180-(уголВ+уголС)=180-(57+57)=56 градусов. На третьем рисунке сумма углов треуголника равна 180, значит угол А=180-(100+55)=25 градусов. в итоге, больше всего градусов имеет угол А на первом рисунке))
9. угол равностороннего равен 60. 60:4=15.
Надеюсь мой ответ не удалят опять))
Двугранный угол при ребре основания - это угол наклона боковой грани к основанию. Он равен плоскому углу между апофемой и её проекцией на основание.
Примем сторону основания за а. Тогда проекция апофемы равна (а/2).
Отсюда апофема А равна (а/2)/cosα =a/(2cos α).
Возведём в квадрат: А² = а²/(4cos² α).
С другой стороны, апофема как высота боковой грани равна:
А² = L² - (a/2)².
Приравняем а²/(4cos² α) = L² - (a/2)²
Отсюда получаем а² = (4L²cos² α)/(1 + cos² α).
Высота Н пирамиды равна:
H = (a/2)*tg α = (2Lcos α)*tg α/(2√(1 + cos² α)).
Объём пирамиды равен:
V = (1/3)SoH = (1/3)*(4L²cos² α)/(1 + cos² α)*((2Lcos α)*tg α/(2√(1 + cos² α))).