Завдання на повторення пикільного матеріалу з геометрі 1. Висота ВМ трикутника АВС ділить сторону АС на відрізки АМ і СМ так, що АМ=12см, CM 4см, LA=30°. Знайдіть: а) довжину сторони ВС; б) площу трикутника АВС; в) радіус кола, описаного навколо трикутника АВС. 2. Знайдіть площу круга, вписаного в трикутник зі сторонами 4см, 13см і 15см. 3. Один з катетів прямокутного трикутника дорівнює 30см, а радіус описаного навколо нього кола - 17см. Обчисліть площу даного трикутника. 4. 4. Бісектриса тупого кута паралелограма ділить його сторону на відрізки завдовжки 3см і 5см, рахуючи від вершини гострого кута, який дорівнює 60°. Обчисліть кути паралелограма, його периметр та площу. 5. Площа ромба дорівнює 120см", а його діагоналі відносяться як 5:12. Знайдіть периметр ромба. 6. Менша основа прямокутної трапеції дорівнює 12см, а менша бічна сторона - 4v3 см. Знайдіть площу трапеції, якщо один із ї кутів дорівнює 120°. 7. Менша основа рівнобічної трапеції порівнює 15см, а висота - 3v3 см. Знайдіть бічну сторону та площу трапецӣ, якщо один із ії кутів дорівнює 150°. Задание на повторение пикильного материала по геометре 1. Высота ВМ треугольника АВС делит сторону АС на отрезки АМ и СМ так, что АМ=12см, CM 4см, LA=30°. Найдите: а) длину стороны ВС; б) площадь треугольника АВС; в) радиус круга, описанного вокруг треугольника АВС. 2. Найдите площадь круга, вписанного в треугольник со сторонами 4см, 13см и 15см. 3. Один из катетов прямоугольного треугольника равен 30см, а радиус описанного вокруг него кола-17см. Вычислите площадь данного треугольника. 4. 4. Биссектриса тупого угла параллелограмма делит его сторону на отрезки длиной 3см и 5см, считая от вершины острого угла, который равен 60°. Вычислите углы параллелограмма, его периметр и площадь. 5. Площадь ромба равна 120см", а его диагонали относятся как 5:12. Найдите периметр ромба. 6. Меньшее основание прямоугольной трапеции равна 12см, а меньшая боковая сторона - 4v3 см. Найдите площадь трапеции, если один из ее углов равен 120°. 7. Меньшая основа рівнобічної трапеции сравнивает 15см, а высота - 3v3 см. Найдите боковую сторону и площадь трапецӣ, если один из ее углов равен 150°.
Площадь основания шарового сегмента S=πr². 64π=πr². Отсюда r=8 ( Радиус основания сегмента) Площадь сферической поверхности шарового сегмента S=2πRh, где R- радиус шара. 100π=2πRh, отсюда 2Rh=100. По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r². Отсюда h=√(100-64)=6. R=100/(2*6)=8и1/3. Вот теперь знаем и R, и h. Формула объема шарового сегмента V=πh²(R-(1/3)*h)). Подставляем известные значения и имеем: V =π*36*(8и1/3-2)=228π. ответ: V = 228π.
углы def и mef – смежные, луч ek – биссектриса угла def, угол kef в 4 раза
меньше угла mef. найдите углы def и kef .
abc и cbd – смежные, луч bm – биссектриса угла abc, угол abm в 2 раза больше угла cbd.
найдите углы abc и cbd.углы def и mef – смежные, луч ek – биссектриса угла def, угол kef в 4 раза
меньше угла mef. найдите углы def и kef .
abc и cbd – смежные, луч bm – биссектриса угла abc, угол abm в 2 раза больше угла cbd.
найдите углы abc и cbd.углы def и mef – смежные, луч ek – биссектриса угла def, угол kef в 4 раза
меньше угла mef. найдите углы def и kef .
abc и cbd – смежные, луч bm – биссектриса угла abc, угол abm в 2 раза больше угла cbd.
найдите углы abc и cbd.углы def и mef – смежные, луч ek – биссектриса угла def, угол kef в 4 раза
меньше угла mef. найдите углы def и kef .
abc и cbd – смежные, луч bm – биссектриса угла abc, угол abm в 2 раза больше угла cbd.
найдите углы abc и cbd.
64π=πr². Отсюда r=8 ( Радиус основания сегмента)
Площадь сферической поверхности шарового сегмента S=2πRh,
где R- радиус шара.
100π=2πRh, отсюда 2Rh=100.
По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r².
Отсюда h=√(100-64)=6.
R=100/(2*6)=8и1/3.
Вот теперь знаем и R, и h.
Формула объема шарового сегмента V=πh²(R-(1/3)*h)).
Подставляем известные значения и имеем:
V =π*36*(8и1/3-2)=228π.
ответ: V = 228π.
https://ru-static.z-dn.net/files/db3/f2bb8e148665d36051a6a0a5e42354f8.jpg