Перпендикуляр OM образовывает прямоугольные треугольники AMO и BMO. Для них верно, из теоремы Пифагора: AO^2 = OM^2 + 3^2 BO^2 = OM^2 + 12^2 Но при этом для большого прямоугольного треугольника ABO верно: 15^2 = AO^2 + BO^2 Сложим два первых выражения: AO^2 + BO^2 = 2*OM^2 + 9 + 144 = 2*OM^2 + 153 И приравняем со вторым: 225 = 2*OM^2 + 153 2*OM^2 = 225 - 153 = 72 OM^2 = 36 OM = 6 Теперь подставим в первое выражение и найдём половинки диагоналей, т.е. AO и BO: AO^2 = 36 + 9 = 45 AO = = 3* BO^2 = 36 + 144 = 180 BO = = 6* Площадь ромба равна половине произведения диагоналей. Не забываем, что мы нашли половинки диагоналей, т.е.: S = 1/2 * 2*AO * 2*BO = 2*AO*BO = 2 * 3* * 6* = 36 * 5 = 180 см^2
Обозначим вершины трапеции аbcd ad=34 bc=2 проведём диагональ ас и опустим высоту сн. трапеция равнобокая dн=(аd-bc)/2=16 ac пересекает параллельные прямые аd и bc поэтому накрест лежащие углы равны . угол саd равен углу асв. кроме того са биссектриса угла всd . поэтому cad также равен углу асd. рассмотрим треугольник асd. в нем мы только что установили что угол а равен углу с. поэтому аd равно dc = 34 теперь рассмотрим треугольник снd. он прямоугольный . угол н прямой. dc=34 dh=16 по теореме пифагора ch = √(34^2-16^2)= 30 площадь трапеции - средняя линия (аd+bc)/2= 18 умножить на найденную высоту сн=30 - равна 540 см^2
AO^2 = OM^2 + 3^2
BO^2 = OM^2 + 12^2
Но при этом для большого прямоугольного треугольника ABO верно:
15^2 = AO^2 + BO^2
Сложим два первых выражения:
AO^2 + BO^2 = 2*OM^2 + 9 + 144 = 2*OM^2 + 153
И приравняем со вторым:
225 = 2*OM^2 + 153
2*OM^2 = 225 - 153 = 72
OM^2 = 36
OM = 6
Теперь подставим в первое выражение и найдём половинки диагоналей, т.е. AO и BO:
AO^2 = 36 + 9 = 45
AO = = 3*
BO^2 = 36 + 144 = 180
BO = = 6*
Площадь ромба равна половине произведения диагоналей. Не забываем, что мы нашли половинки диагоналей, т.е.:
S = 1/2 * 2*AO * 2*BO = 2*AO*BO = 2 * 3* * 6* = 36 * 5 = 180 см^2