В тетраэдре DABC точка M делит пополам ребро AD. Известно, что в этом тетраэдре BA=BD;CA=CD. На рисунке . Докажи, что прямая, на которой находится ребро AD, перпендикулярна плоскости (BCM).
Объяснение:
1. В тетраэдре все боковые ребра , проведенные из вершины тетраэдра , равны. По условию BA=BD;CA=CD ,значит ΔADB –равносторонний, ΔDAC –равносторонний.
2. По свойству медианы равнобедренного треугольника , она является высотой, значит ВМ⊥ АD и СМ ⊥AD .
Поэтому угол , который образует медиана с основаниями этих треугольников равен 90°
3. Согласно признаку перпендикулярности прямой и плоскости , если прямая перпендикулярна к двум пересекающимся прямым МС и МВ , лежащим в плоскости ВСМ, то она перпендикулярна к этой плоскости (ВСМ).
В тетраэдре DABC точка M делит пополам ребро AD. Известно, что в этом тетраэдре BA=BD;CA=CD. На рисунке . Докажи, что прямая, на которой находится ребро AD, перпендикулярна плоскости (BCM).
Объяснение:
1. В тетраэдре все боковые ребра , проведенные из вершины тетраэдра , равны. По условию BA=BD;CA=CD ,значит ΔADB –равносторонний, ΔDAC –равносторонний.
2. По свойству медианы равнобедренного треугольника , она является высотой, значит ВМ⊥ АD и СМ ⊥AD .
Поэтому угол , который образует медиана с основаниями этих треугольников равен 90°
3. Согласно признаку перпендикулярности прямой и плоскости , если прямая перпендикулярна к двум пересекающимся прямым МС и МВ , лежащим в плоскости ВСМ, то она перпендикулярна к этой плоскости (ВСМ).
Объяснение:
7) Тр-к ABD - прямоугольный
ВD=AB*cos45 = 5
Тр-к BDC - прямоугольный
по т.Пифагора BC =√(BD^2 + CD^2) = √(25 + 11) = 6
8) Пусть BC - меньшее основание, AD - большее в трапеции ABCD. AC - диагональ.
BC||AD (по признаку трап.), <BCA=<CAD - накрест леж., По условию <BCA = <ACD
Следовательно <CAD= <ACD и образуют р/б тр-к ACD, отсюда CD=AD=17
Проведем высоты BH и CH1 к AD. BC=HH1=1 (прямоугольник). Т.к. трапеция р/бокая, то AH=DH1 = (AD - HH1)/2 = (17-1)/2=8
Тр-к ABH - прямоугольный. по т.Пифагора
BH = √(AB^2 - AH^2)=√(289 - 64) = 15
S = 1/2*(BC + AD)*BH = 1/2* (1+17)*15 = 135