Здравствуйте НУЖНА ВАША !ОЧЕНЬ ДАТЬ КАЧЕСТВЕННЫЙ ОТВЕТ! Задан вектор а (2.-4) и точка A (−6; 2). Запишите уравнения прямой, проходящей через точку A, если:
180-120=60 - сумма оставшихся углов Т.к. тр. равнобедренный углы при основании равны, следовательно каждый угол 60\2=30 Высота проведённая в равнобедренном тр. является и медианой и биссектрисой, следовательно делит основание пополам. Рассмотрим образовавшийся прямоуг. тр.: По 2 свойству прямоуг. тр.: против угла в 30 градусов лежит катет равный половине гипотинузы. Тогда пусть катет лежащий против угла в 30 градусов будет A, тогда гипотинуза будет 2A. По т. Пифагора (2A)²=A²+2² A=√4/3 ответ: √4/3 P.s: Хм не целое, есть ответ?
Углы АКВ и СВК равны как накрест лежащие при пересечении двух параллельных прямых АЕ и ВС секущей ВК. Но по условию <ABK=<CBK, т.к. ВК - биссектриса, значит <AKB=<ABK В треугольнике АВК высота ВК является также и медианой, треугольник АВК - равнобедренный, и <BAK=<AKB. Выше было доказано, что <AKB=<ABK, получаем, что треугольник АВК - равносторонний, и все его углы равны по 60°. Пусть равные отрезки АН, НК и КЕ будут х. Тогда в треугольнике АВК: АК=АВ=2х Таким образом, стороны параллелограмма равны: АВ=2х, АЕ=3х Зная периметр параллелограмма, запишем: (2х+3х)*2=40 4х+6х=40 10х=40 х=4 АВ=2*4=8 см АЕ=3*4=12 см В равностороннем треугольнике <BAK=60°. Противоположные углы параллелограмма равны, значит <C=60° также. Находим углы В и Е параллелограмма АВСЕ: <B=<E=(360-2*60):2=120°
Т.к. тр. равнобедренный углы при основании равны, следовательно каждый угол 60\2=30
Высота проведённая в равнобедренном тр. является и медианой и биссектрисой,
следовательно делит основание пополам.
Рассмотрим образовавшийся прямоуг. тр.: По 2 свойству прямоуг. тр.: против угла в 30 градусов лежит катет равный половине гипотинузы. Тогда пусть катет лежащий против угла в 30 градусов будет A, тогда гипотинуза будет 2A.
По т. Пифагора (2A)²=A²+2²
A=√4/3
ответ: √4/3
P.s: Хм не целое, есть ответ?
В треугольнике АВК высота ВК является также и медианой, треугольник АВК - равнобедренный, и <BAK=<AKB. Выше было доказано, что <AKB=<ABK, получаем, что треугольник АВК - равносторонний, и все его углы равны по 60°.
Пусть равные отрезки АН, НК и КЕ будут х. Тогда в треугольнике АВК:
АК=АВ=2х
Таким образом, стороны параллелограмма равны:
АВ=2х, АЕ=3х
Зная периметр параллелограмма, запишем:
(2х+3х)*2=40
4х+6х=40
10х=40
х=4
АВ=2*4=8 см АЕ=3*4=12 см
В равностороннем треугольнике <BAK=60°. Противоположные углы параллелограмма равны, значит <C=60° также. Находим углы В и Е параллелограмма АВСЕ:
<B=<E=(360-2*60):2=120°