Опустим перпендикуляр из С на АД, продолжив АД за точку Д; значит СН=5. Из прямоугольного треугольника АСН найдём АН по теореме Пифагора, АН=12. т.к. уголА + угол С равно 90 град., то тангенс А равен котангенсу С, получаем: ВД относится к АД, также как ВС относится к ВД, тогда ВД квадрат равен АД *ВС. ВС обозначим за х, тогда АД= 12-х. Получили квадратное уравнение х квадрат -12х+25=0. х равен 6-корень из 11. 6+корень из 11 не подойдёт, т.к. надо длину меньшего основания, а 12 -(6+корень из 11) получится меньше, чем 12 -(6- корень из 11). ответ: 6 - корень из 11.
Т.к. M равноудалена от A,B,C,D, то A,B,C,D лежат на окружности с центром в т. M. Угол BCD - вписанный, опирается на дугу BAD, т.е. градусная мера дуги BAD=2*112=224 Угол CBA - вписанный, опирается на дугу CDA, т.е. градусная мера дуги CDA=2*128=256 AD - диаметр, поэтому дуга AD равна 180 градусам Тогда дугаBA=дугаBAD-дугаAD=224-180=44 градуса дугаCD=дугаCDA-дугаDA=256-180=76 градусов ДугаBC=дугаAD-дугаAB-дугаCD=180-76-44=60 Т.е. уголBMС=60 градусов - центральный, опирающийся на хорду длиной 4, поэтому радиус (r=AM=MD) равен 4 Диаметр=AD=4*2=8
т.к. уголА + угол С равно 90 град., то тангенс А равен котангенсу С, получаем: ВД относится к АД, также как ВС относится к ВД, тогда ВД квадрат равен АД *ВС. ВС обозначим за х, тогда АД= 12-х. Получили квадратное уравнение х квадрат -12х+25=0. х равен 6-корень из 11. 6+корень из 11 не подойдёт, т.к. надо длину меньшего основания, а 12 -(6+корень из 11) получится меньше, чем 12 -(6- корень из 11). ответ: 6 - корень из 11.
Угол BCD - вписанный, опирается на дугу BAD, т.е. градусная мера дуги BAD=2*112=224
Угол CBA - вписанный, опирается на дугу CDA, т.е. градусная мера дуги CDA=2*128=256
AD - диаметр, поэтому дуга AD равна 180 градусам
Тогда дугаBA=дугаBAD-дугаAD=224-180=44 градуса
дугаCD=дугаCDA-дугаDA=256-180=76 градусов
ДугаBC=дугаAD-дугаAB-дугаCD=180-76-44=60
Т.е. уголBMС=60 градусов - центральный, опирающийся на хорду длиной 4, поэтому радиус (r=AM=MD) равен 4
Диаметр=AD=4*2=8