сторона= 52\4=13 см Площадь ромба равна произведению квадрата стороны на синус угла между сторонами отсюда синус угла =площадь робма разделить на квадрат стороны sin A=120\(13^2)=120\169 Так как угол А -острый,то cos A=корень(1-sin^2 A)=корень(1-(120\169)^2)= =119\169 По одной из основных формул тригонометрии tg A=sin A\cos A=120\169\(119\169)=120\119 ответ:120\169,119\169,120\119.
2)
Катеты треугольника относятся друг к другу как 9 к 40.
Пусть длина одного катета 9х, тогда второго 40х.
По теореме пифагора квадрат катетов равен квадрату гипотенузы
(9х) в квадрате + (40х) в квадрате = 82 в квадрате
81 х^2 + 1600 х^2 = 6724. Отсюда х^2 = 4.
х=2.
один катет 9х=18 см
второй катет 40х=80 см 3)
Боковые стороны: (36-10)/2=13 Высота h=корень(169-25)=12 tga=5/12 sina=5/13 cosa=12/13. 4) cos - отношение прилежащего( в данном случае неизвестного) катета к гипотенузе, пусть гипотенуза - х, тогда катет 24х / 25. по теореме пифагора квадрат гипотенузы равен сумме квадратов катетов x^2=14^2+(24x / 25)^2, отсюда х=50, а второй катет равен 48
1)Периметр ромба равен 4*сторона
сторона= 52\4=13 см
Площадь ромба равна произведению квадрата стороны на синус угла между сторонами
отсюда синус угла =площадь робма разделить на квадрат стороны
sin A=120\(13^2)=120\169
Так как угол А -острый,то cos A=корень(1-sin^2 A)=корень(1-(120\169)^2)=
=119\169
По одной из основных формул тригонометрии
tg A=sin A\cos A=120\169\(119\169)=120\119
ответ:120\169,119\169,120\119.
2)
Катеты треугольника относятся друг к другу как 9 к 40.
Пусть длина одного катета 9х, тогда второго 40х.
По теореме пифагора квадрат катетов равен квадрату гипотенузы
(9х) в квадрате + (40х) в квадрате = 82 в квадрате
81 х^2 + 1600 х^2 = 6724. Отсюда х^2 = 4.
х=2.
один катет 9х=18 см
второй катет 40х=80 см
3)
Боковые стороны: (36-10)/2=13
Высота h=корень(169-25)=12
tga=5/12 sina=5/13 cosa=12/13.
4) cos - отношение прилежащего( в данном случае неизвестного) катета к гипотенузе, пусть гипотенуза - х, тогда катет 24х / 25. по теореме пифагора квадрат гипотенузы равен сумме квадратов катетов x^2=14^2+(24x / 25)^2, отсюда х=50, а второй катет равен 48
Объяснение:
Сумма смежных углов равна 180°
1)
а,б) если <АОВ больше <ВОС в 4р.
Пусть градусная мера угла <ВОС равно х. Тогда градусная мера угла <АОВ 4х
Составляем уравнение.
х+4х=180°
5х=180°
х=180/5
х=36° градусная мера угла <ВОС
<АОВ=4*36=144°
ответ: <АОВ=144°; <ВОС=36°
Если <АОВ меньше <ВОС, составляется такое же уравнение. При этом <АОВ=х; <ВОС=4х. <АОВ=36°; <АОВ=144°
2)
Пусть градусная мера угла <ВОС будет х;
Тогда градусная мера угла <АОВ будет (х+53°).
Составляем уравнение
х+(х+53)=180
2х=180-53
х=127/2
х=63,5° градусная мера угла <ВОС
63,5+53=116,5° градусная мера угла <АОВ.
ответ: 63,5°; 116,5°