земледелец владеет несколькими участками один из которых расположен на склоне холма.ширина участка 45м а верхняя точка ноходится на высоте 7м от подножия.какова площадь отведенная под посевы?ответ запишите в квадратных метрах
Тангенс угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему. Проведём дополнительные прямые линии так, чтобы получить прямоугольные треугольники, из которых можно будет найти катеты необходимых углов и воспользуемся формулами тангенса суммы и разности углов.
а)
tg∠A = BC / AC = 3/6 = 1/2
ctg∠A = AC / BC = 6/3 = 2
б)
tg∠B = AC / BC = 4/6 = 2/3
ctg∠B = BC / AC = 6/4 = 3/2
№2
Тангенс угла в прямоугольном треугольнике -это отношение противолежащего катета к прилежащему. Проведём дополнительные прямые линии так, чтобы получить прямоугольные треугольники, из которых можно будет найти катеты необходимых углов и воспользуемся формулами тангенса суммы и разности углов.
Площадь боковой поверхности равна 400 * √3 / 3 см2.
Объяснение:
Так как в основании призмы ромб, а его диагонали, в точке пересечения делятся пополам и пересекаются под прямым углом, то треугольник АОД прямоугольный, АО = АС / 2 = 16 / 2 = 8 см, ОД = 12 / 2 = 6 см.
Объяснение:
Тангенс угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему. Проведём дополнительные прямые линии так, чтобы получить прямоугольные треугольники, из которых можно будет найти катеты необходимых углов и воспользуемся формулами тангенса суммы и разности углов.
а)
tg∠A = BC / AC = 3/6 = 1/2
ctg∠A = AC / BC = 6/3 = 2
б)
tg∠B = AC / BC = 4/6 = 2/3
ctg∠B = BC / AC = 6/4 = 3/2
№2
Тангенс угла в прямоугольном треугольнике -это отношение противолежащего катета к прилежащему. Проведём дополнительные прямые линии так, чтобы получить прямоугольные треугольники, из которых можно будет найти катеты необходимых углов и воспользуемся формулами тангенса суммы и разности углов.
tg(a-β)=tga-tgβ/1+tga×tgβ; tg(a+β)= tga+tgβ/1-tga×tgβ
a)tg ∠BAC = tg(∠BAD-∠CAD) =tg∠BAD- tg-∠CAD/1+tg∠BAD×tg∠CAD=∠BAD= BK/AK=5/5=1; tg∠CAD= CD/AD=3/6=1/2=1-1/2/1+1×1/2=1/2/3/2=1/3
ctg∠BAD=1/tg∠BAD=1/1/3
b) tg∠ABC=tg(∠CBD+∠KBA) =tg∠CBD+tg∠KBA/1-tg∠CBD×tg∠KBA=tg∠CBD=CD/BD=1/3; tg∠KBA=AK/BK=5/5=1=1/3+1/1-1×1/3=4/3/2/3=4/2=2
Площадь боковой поверхности равна 400 * √3 / 3 см2.
Объяснение:
Так как в основании призмы ромб, а его диагонали, в точке пересечения делятся пополам и пересекаются под прямым углом, то треугольник АОД прямоугольный, АО = АС / 2 = 16 / 2 = 8 см, ОД = 12 / 2 = 6 см.
Тогда, по теореме Пифагора, АД2 = АО2 + ОД2 = 64 + 36 = 100.
АД = 10 см.
Так как призма прямая, то треугольник АДД1 прямоугольный, тогда tg30 = ДД1 / АД.
ДД1 = АД * tg30 = 10 * (1 /√3) = 10 * √3 / 3.
Так как у ромба длины всех сторон равны, то Sбок = 4 * Sаа1д1д = 4 * 10 * 10 * √3 / 3 = 400 * √3 / 3 см2.