Из условия имеем, треугольник MAD, прямоугольный, и угол между плоскостями равен углу MAD треугольника, следовательно MD = Тангенс(30)*AD, MA = 2*MD.
Теперь если считать Центром квадрата точку О, то MО - расстояние от вершины пирамиды до прямой AC. Треугольник MDО - прямоугольный, DО - половина диагонали квадрата, находим легко, и вычисляем MО как гипотенузу, по известным двум катетам MD и DО.
Площадь теперь тоже найти не трудно: это сумма площадей квадрата, прямоугольного треугольника MAD (стороны известны), прямоугольного треугольника MCD, равного MAD, прямоугольного треугольника MAB равного MBC, в которых тоже уже известны все стороны и не сложно посчитать площадь
АВСД - параллелограмм , ВМ и ДК - биссектрисы , то есть ∠АВМ=∠МВС , ∠АДК=∠СДК , МД=5 см , КС=7 см .
Так как в параллелограмме противоположные углы равны, то ∠В=∠Д ⇒ ∠АВМ=∠СВМ=∠АДК=∠СДК .
Но ∠АМВ и ∠АДК - соответственные равные углы ⇒ ВМ ║ДК.
Так как АВСД - параллелограмм, то ВК ║ ДМ ⇒ МВКД - тоже параллелограмм, а значит ВК=ДМ=5 см.
∠АДМ=∠ДКС как внутренние накрест лежащие при параллельных АД и ВС и секущей КД . Но ∠АДМ=∠СДК (КД - биссектриса) ⇒ ∠СДК=∠КДС , а это углы при основании ΔДСК ⇒ ΔДСК - равнобедренный ⇒ КС=СД=7 см .
Периметр параллелограмма:
Р=2*СД+2*ВС=2*7+2*(ВК+КС)=14+2*(5+7)=14+2*12=14+24=38 см .
Теперь если считать Центром квадрата точку О, то MО - расстояние от вершины пирамиды до прямой AC. Треугольник MDО - прямоугольный, DО - половина диагонали квадрата, находим легко, и вычисляем MО как гипотенузу, по известным двум катетам MD и DО.
Площадь теперь тоже найти не трудно:
это сумма площадей квадрата, прямоугольного треугольника MAD (стороны известны), прямоугольного треугольника MCD, равного MAD, прямоугольного треугольника MAB равного MBC, в которых тоже уже известны все стороны и не сложно посчитать площадь
АВСД - параллелограмм , ВМ и ДК - биссектрисы , то есть ∠АВМ=∠МВС , ∠АДК=∠СДК , МД=5 см , КС=7 см .
Так как в параллелограмме противоположные углы равны, то ∠В=∠Д ⇒ ∠АВМ=∠СВМ=∠АДК=∠СДК .
Но ∠АМВ и ∠АДК - соответственные равные углы ⇒ ВМ ║ДК.
Так как АВСД - параллелограмм, то ВК ║ ДМ ⇒ МВКД - тоже параллелограмм, а значит ВК=ДМ=5 см.
∠АДМ=∠ДКС как внутренние накрест лежащие при параллельных АД и ВС и секущей КД . Но ∠АДМ=∠СДК (КД - биссектриса) ⇒ ∠СДК=∠КДС , а это углы при основании ΔДСК ⇒ ΔДСК - равнобедренный ⇒ КС=СД=7 см .
Периметр параллелограмма:
Р=2*СД+2*ВС=2*7+2*(ВК+КС)=14+2*(5+7)=14+2*12=14+24=38 см .