Пусть в параллелограмме ABCD угол A равен 60 градусам, а высота BH делит сторону AD пополам (см. рисунок). Рассмотрим прямоугольный треугольник ABH. В нём острый угол HAB равен 60 градусам, тогда другой острый угол - ABH - равен 90-60=30 градусам. Известно, что в прямогольном треугольнике катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Значит, AB=2AH. Кроме того, AD=2AH, значит, AB=AD. По свойству параллелограмма, AB=CD; AD=BC, это значит, что все стороны нашего параллелограмма равны между собой, тогда каждая из них равна 1/4 периметра. В частности, AB=AD=24/4=6. Теперь рассмотрим треугольник ABD. В него входит меньшая диагональ параллелограмма - BD. Нам известно, что этот треугольник равнобедренный, так как AB=AD. Так как угол при вершине равен 60 градусам, 2 других угла треугольника также равны 60 градусам. Значит, треугольник равносторонний и AB=AD=BD. Отсюда BD=6.
Цитата: "Неравенство треугольника для трёхгранного угла: Каждый плоский угол трёхгранного угла меньше суммы двух других его плоских углов. Сумма плоских углов трёхгранного угла меньше 360 градусов." Значит для 1)90° ,65° , 45° - такой трехгранный угол существует, так как 90+65+45=200, а 90<45+65. 2)80° ,47°,120° - такой трехгранный угол существует, так как 80+47+120=247, а 120<80+47. 3)150°,130°,90° - такой трехгранный угол НЕ существует, так как 150+130+90=370 4)33°,45°,78° - такой трехгранный угол НЕ существует, так как 33+45+78=156, но 78=33+45.
Каждый плоский угол трёхгранного угла меньше суммы двух других его плоских углов.
Сумма плоских углов трёхгранного угла меньше 360 градусов."
Значит для
1)90° ,65° , 45° - такой трехгранный угол существует, так как 90+65+45=200, а 90<45+65.
2)80° ,47°,120° - такой трехгранный угол существует, так как 80+47+120=247, а 120<80+47.
3)150°,130°,90° - такой трехгранный угол НЕ существует, так как 150+130+90=370
4)33°,45°,78° - такой трехгранный угол НЕ существует, так как 33+45+78=156, но 78=33+45.