Пусть m-катет тр-ка ,лежащего в основании пирамиды и a-острый угол в основании пирамиды.Найдем второй катет и гипотенузу тр-ка. b=mctga c=m/sina.По условии задачи основание высоты пирамиды является центром вписанной в основание пирамиды.Тогда r=m+mctga-m/sina= m(1+ ctga-1/sina). вычислим высоту пирамиды и площадь основания пирамиды: H = m(1+ ctga-1/sina)tgb Sосн=m*m ctga/2=m^2 ctga/2 V= Sосн *Н/3
Грани правильного тетраэдра - равносторонние треугольники.
Их биссектриса является и высотой и медианой.
В сечении образуется равнобедренный треугольник, одна сторона которого равна ребру тетраэдра, две других - высоты грани.
Высота грани h = a*cos 30° = a√3/2 = 5√3/2.
Площадь сечения можно определить или 1) по формуле Герона, или 2) через высоту сечения.
1) Полупериметр p = 6,83013. Площадь S = √(p(p-a)(p-b)(p-c).
Поставив данные, получаем:
S = √( 6,83013*1,830123*2,5*2,5) = √78,125 = 8,83883.
2) Высота сечения из середины ребра на противоположное ребро равна:
h(c) = √(h² - (a/2)²) = √(18,75 - 6,25) = √12,5 ≈ 4,33013.
S = (1/2)*h(c)*a = (1/2)*5*4,330135 = 8,83883.
b=mctga c=m/sina.По условии задачи основание высоты пирамиды является центром вписанной в основание пирамиды.Тогда
r=m+mctga-m/sina= m(1+ ctga-1/sina).
вычислим высоту пирамиды и площадь основания пирамиды:
H = m(1+ ctga-1/sina)tgb
Sосн=m*m ctga/2=m^2 ctga/2
V= Sосн *Н/3
V= m(1+ ctga-1/sina)tgb* m^2 ctga/6=m^3 (1+ ctga-1/sina)tgb* ctga/6
V= m^3 (1+ ctga-1/sina)tgb* ctga/6