Зина хочет сделать цветовую клумбу в форме параллелограмма. у нее есть 15.4 метра(-ов) декоротивного заборчика. какой длины должна быть вторая сторона клумбы, если одна сторона равна 3, 6м?
Даны два вектора m{-1; 2} и n{4;-x}. Найдите: а) При каких значениях x прямые, содержащие данные векторы, коллинеарны?
б) При каких значениях x прямые, содержащие данные векторы, перпендикулярны?
в) При каких значениях x прямые, содержащие данные векторы, образуют тупой угол?
Решение
а) Два вектора коллинеарные ,если их координаты пропорциональны, значит для m{-1; 2} и n{4;-x} имеем -1:4=2:(-х) , х=8;
б)Вектора перпендикулярны , если их скалярное произведение равно нулю : m*n=-1*4+2*(-х) , -1*4+2*(-х) =0 , x=2;
a) Угол будет тупым , если cos(∠m;n) <0 .Косинус угла между векторами равен скалярному произведению этих векторов, деленному на произведение их длин.
Найдем длины векторов:
Длина вектора |m|=√( (-1)²+2²)=√(1 +4)=√5,
Длина вектора |n|=√( 4²+(-x)²)=√(16+x²),
Скалярное произведение m*n=-1*4+2*(-х)=-4-2x
(-4-2x)/ (√5*√(16+x²))<0/Значение дроби отрицательно , числитель и знаменатель разных знаков. Но √5*√(16+x²)>0 при х≠±4, тогда -4-2х<0 или х>2. Тогда учитывая х≠4 получаем х∈(2;4)∪(4;+∞).
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
Даны два вектора m{-1; 2} и n{4;-x}. Найдите: а) При каких значениях x прямые, содержащие данные векторы, коллинеарны?
б) При каких значениях x прямые, содержащие данные векторы, перпендикулярны?
в) При каких значениях x прямые, содержащие данные векторы, образуют тупой угол?
Решение
а) Два вектора коллинеарные ,если их координаты пропорциональны, значит для m{-1; 2} и n{4;-x} имеем -1:4=2:(-х) , х=8;
б)Вектора перпендикулярны , если их скалярное произведение равно нулю : m*n=-1*4+2*(-х) , -1*4+2*(-х) =0 , x=2;
a) Угол будет тупым , если cos(∠m;n) <0 .Косинус угла между векторами равен скалярному произведению этих векторов, деленному на произведение их длин.
Найдем длины векторов:
Длина вектора |m|=√( (-1)²+2²)=√(1 +4)=√5,
Длина вектора |n|=√( 4²+(-x)²)=√(16+x²),
Скалярное произведение m*n=-1*4+2*(-х)=-4-2x
(-4-2x)/ (√5*√(16+x²))<0/Значение дроби отрицательно , числитель и знаменатель разных знаков. Но √5*√(16+x²)>0 при х≠±4, тогда -4-2х<0 или х>2. Тогда учитывая х≠4 получаем х∈(2;4)∪(4;+∞).
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.