знаходження площі трикутника» Варіант 1 Початковий та середній рівень Запишіть короткий розв'язок задач.( 4- ів) 1. Елементи трикутника ABC позначено так, як показано на рисунку. Установіть відповідність між трикутником із поданими елементами (1-4) та його площею (А-Д). В В Y A ь 1 А 2 а 10, p. 3, sina 62 5 2 ас - 2/3, В 120° Б 9/2 с = 6, b = 62, q = 30° B 953 4 аѕ bеса 6 г 313 д 23
Итак, поехали. см. рисунок. Там сделали допостроения и обозначения. СВ=х АС=х-7 по т. Пифагора (х-7)²+х²=13² отсюда х=12 (отрицательное значение ж не подходит) х-7=5 Катеты будут 5 и 12.Напишем их зеленым на рисунке, чтоб удобнее было. А теперь самое интересное. Центр опис.окр. лежит на серединных перпендикулярах. Что и обозначено. Т.е. СМ=12/2=6 Дальше, ∠СОК - центральный для ∠СВК, значит он = 2α, тогда угол СОН в 2 раза меньше ( треугольник СОК равнобедр. с высотой ОН) и равен α. Обозначим зеленым. Тогда ∠ОСМ=90-α-45=45-α теперь из Δ ОСМ имеем R=CM/cos(45-α) R=6/cos(45-α) подставляя формулу косинуса разности получаем cos(45-α)=cos45cosα+sin45sinα=√2/2(cosα+sinα)
но из первоначального треугольника, когда нашли его катеты, имеем cosα=12/13 sinα=5/13 a cosα+sinα=12/13+5/13=17/13 cos(45-α)=17√2/26
Берешь угол. Вершина угла - точка А. На одном из лучей откладываешь длину гипотенузы. Получаешь точку В. А затем из точки В опускаешь перпендикуляр на другой луч. Получаешь точку С - вершину прямого угла. Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
см. рисунок. Там сделали допостроения и обозначения.
СВ=х
АС=х-7
по т. Пифагора (х-7)²+х²=13²
отсюда х=12 (отрицательное значение ж не подходит)
х-7=5
Катеты будут 5 и 12.Напишем их зеленым на рисунке, чтоб удобнее было.
А теперь самое интересное.
Центр опис.окр. лежит на серединных перпендикулярах. Что и обозначено. Т.е. СМ=12/2=6
Дальше, ∠СОК - центральный для ∠СВК, значит он = 2α, тогда угол СОН в 2 раза меньше ( треугольник СОК равнобедр. с высотой ОН) и равен α. Обозначим зеленым.
Тогда ∠ОСМ=90-α-45=45-α
теперь из Δ ОСМ имеем R=CM/cos(45-α)
R=6/cos(45-α)
подставляя формулу косинуса разности получаем
cos(45-α)=cos45cosα+sin45sinα=√2/2(cosα+sinα)
но из первоначального треугольника, когда нашли его катеты, имеем
cosα=12/13
sinα=5/13
a cosα+sinα=12/13+5/13=17/13
cos(45-α)=17√2/26
и R=6/(17√2/26)=78√2/17
вроде так.
Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.