В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
bauer2002
bauer2002
20.01.2023 08:45 •  Геометрия

ЗНАТОКИ с заданиями по геометрии


ЗНАТОКИ с заданиями по геометрии
ЗНАТОКИ с заданиями по геометрии
ЗНАТОКИ с заданиями по геометрии
ЗНАТОКИ с заданиями по геометрии
ЗНАТОКИ с заданиями по геометрии

Показать ответ
Ответ:
Anna282005u
Anna282005u
12.04.2020 02:54

ответ:. Р=22см

Объяснение: Обозначим вершины треугольника как А В С, а точки касания Д,К,М, причём Д лежит на АВ, К лежит на ВС; М на АС. Стороны треугольника являются касательными к вписанной окружности и, отрезки касательных, соединяясь в одной вершине равны от вершины до точки касания. Поэтому ВД=ВК=7см; АД=АМ=2см; СК=СМ=2см; отсюда следует что

АМ=СМ=2см. Теперь найдём стороны треугольника, сложив эти отрезки:

АВ=ВС=2+7=9см; АС=2+2=4см. Теперь найдём периметр треугольника зная его стороны: Р=9+9+4=22см

0,0(0 оценок)
Ответ:
CherryGirll
CherryGirll
07.03.2023 13:38
Равнобедренного может? Если да , то вот .
В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота