Пусть шар радиусом R=5см пересекает плоскость равнобедренной трапеции с основаниями a=8√2см и b=4√2см так, что сечение шара касается всех сторон этой трапеции. Сечение шара - окружность радиуса r, она является вписанной в равнобедренную трапецию.
Радиус вписанной в равнобедренную трапецию окружности будет равен половине от среднего пропорционального между её основаниями, то есть:
r=1/2*√ab=1/2*√(8√2*4√2)=1/2*√64=4см
d - расстояние от центра шара до плоскости трапеции.
Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см
3см
Объяснение:
Пусть шар радиусом R=5см пересекает плоскость равнобедренной трапеции с основаниями a=8√2см и b=4√2см так, что сечение шара касается всех сторон этой трапеции. Сечение шара - окружность радиуса r, она является вписанной в равнобедренную трапецию.
Радиус вписанной в равнобедренную трапецию окружности будет равен половине от среднего пропорционального между её основаниями, то есть:
r=1/2*√ab=1/2*√(8√2*4√2)=1/2*√64=4см
d - расстояние от центра шара до плоскости трапеции.
По теореме Пифагора:
d=√(R²-r²)=√(25-16)=3см