Площадь параллелограмма равна произведению сторон на синус угла между ними. Найдем синус угла. В прямоугольном треугольнике тангенс определяется как отношение противолежащего катета к прилежащему. Имеем:
тангенс \alpha= дробь, числитель — a, знаменатель — b = дробь, числитель — корень из { 2}, знаменатель — 4 .
Таким образом, a=x корень из { 2}, b=4x, где x — число.
По теореме Пифагора гипотенуза этого прямоугольного треугольника равна:
c= корень из { 2x в степени 2 плюс 16x в степени 2 }=3x корень из { 2}.
.
В прямоугольном треугольнике синус определяется как отношение противолежащего катета к гипотенузе. Имеем:
синус \alpha= дробь, числитель — a, знаменатель — c = дробь, числитель — x корень из { 2}, знаменатель — 3x корень из { 2 }= дробь, числитель — 1, знаменатель — 3 .
Таким образом,
12 умножить на 5 умножить на дробь, числитель — 1, знаменатель — 3 =20.
Сумма внутренних углов шестиугольника равна 720 градусов,а так как он правильный, то все углы в нем равны, то есть по 120 градусов, а углы при малой диагонали равны по 30 градусов. Если из вершины шестиугольника опустить перпендикуляр на малую диагональ, то получим прямоугольный треугольник, в котором один катет равен половине малой диагонали,то есть 3/2=1,5,а гипотенуза этого треугольника, есть сторона данного шестиугольника.Из этого треугольника имеем
sin(60)=1,5/a,
где a - сторона шестиугольника.
a=1,5*sin(60)=1,5*sqrt(3)/2=0,75*sqrt(3) Большая диагональ = 2*a=1,75*sqrt(3)
ответ: 20.
Объяснение:
Площадь параллелограмма равна произведению сторон на синус угла между ними. Найдем синус угла. В прямоугольном треугольнике тангенс определяется как отношение противолежащего катета к прилежащему. Имеем:
тангенс \alpha= дробь, числитель — a, знаменатель — b = дробь, числитель — корень из { 2}, знаменатель — 4 .
Таким образом, a=x корень из { 2}, b=4x, где x — число.
По теореме Пифагора гипотенуза этого прямоугольного треугольника равна:
c= корень из { 2x в степени 2 плюс 16x в степени 2 }=3x корень из { 2}.
.
В прямоугольном треугольнике синус определяется как отношение противолежащего катета к гипотенузе. Имеем:
синус \alpha= дробь, числитель — a, знаменатель — c = дробь, числитель — x корень из { 2}, знаменатель — 3x корень из { 2 }= дробь, числитель — 1, знаменатель — 3 .
Таким образом,
12 умножить на 5 умножить на дробь, числитель — 1, знаменатель — 3 =20.
ответ: 20.
Сумма внутренних углов шестиугольника равна 720 градусов,а так как он правильный, то все углы в нем равны, то есть по 120 градусов, а углы при малой диагонали равны по 30 градусов. Если из вершины шестиугольника опустить перпендикуляр на малую диагональ, то получим прямоугольный треугольник, в котором один катет равен половине малой диагонали,то есть 3/2=1,5,а гипотенуза этого треугольника, есть сторона данного шестиугольника.Из этого треугольника имеем
sin(60)=1,5/a,
где a - сторона шестиугольника.
a=1,5*sin(60)=1,5*sqrt(3)/2=0,75*sqrt(3)
Большая диагональ = 2*a=1,75*sqrt(3)