Диагональ, которая перпендикулярна основаниям разбивает трапецию на два подобных треугольника, у которых общей стороной является эта самая диагональ, одновременно являющейся высотой трапеции.
В малом треугольнике с катетом (снованием) 2 см, протв высоты h находится угол α(неизвестный), тогда (согласно условию) угол, примыкающий к катету (основанию) в 18 см равен 90-α. Тогда в большом тр-ке угол между большей боковой стороной трапеции и высотой равен α, а в малом тр-ке угол между высотой и малой боковой стороной равен (90-α). Очевидно, что треугольники подобны, раз у них все соответствующие углы равны.
В подобных тр-ках стороны, лежащие против равных углов, пропорциональны:
2:h =h:18
h² = 36
h = 6
Площадт трапеции равна произведению полусуммы оснований и высоты:
Диагонали ромба делят его на 4 равных прямоугольных треугольника,катеты которых равны половине диагоналей.Обозначим диагонали через.3х и 4х.Тогда катеты прямоугольных треугольников равны.3х/2=1,5х и 4х/2=2х.По теореме Пифагора находим гипотенузу треугольника,то есть сторону ромба: а^2=(1,5х)^2+(2х)^2=2,24x^2+4x^2=6,25x^2; а=2,5х
Перемитр ромба равен 4а=200.Отсюда а=200/4=50.
Поэтому 2,5х=50.Отсюда х=50/2,5=500/25=20.
1,5х=1,5*20=30
2х=2*20=40
Площадь ровна 4 площади равных прямоугольных треугольников,т.е.
S=4*1/2*30*40=2*1200=2400 см^2=24 дм^2
ответ: S=24 дм^2
Диагональ, которая перпендикулярна основаниям разбивает трапецию на два подобных треугольника, у которых общей стороной является эта самая диагональ, одновременно являющейся высотой трапеции.
В малом треугольнике с катетом (снованием) 2 см, протв высоты h находится угол α(неизвестный), тогда (согласно условию) угол, примыкающий к катету (основанию) в 18 см равен 90-α. Тогда в большом тр-ке угол между большей боковой стороной трапеции и высотой равен α, а в малом тр-ке угол между высотой и малой боковой стороной равен (90-α). Очевидно, что треугольники подобны, раз у них все соответствующие углы равны.
В подобных тр-ках стороны, лежащие против равных углов, пропорциональны:
2:h =h:18
h² = 36
h = 6
Площадт трапеции равна произведению полусуммы оснований и высоты:
Sтрап = 0,5(2 + 18)·6 = 60(см²)