1. Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1. S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r. значит можно. 2. Не может. k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ . Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂. CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃. DB =BE ⇒k₂ =2k₁ ; EC =CF ⇒k₃ =2k₂ =4k₁ . AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁ ⇒ AB+BC< AC ,что невозможно.
Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂. DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1.
S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r.
значит можно.
2. Не может.
k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ .
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂.
CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃.
DB =BE ⇒k₂ =2k₁ ;
EC =CF ⇒k₃ =2k₂ =4k₁ .
AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁
⇒ AB+BC< AC ,что невозможно.
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂.
DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
) Пусть АН - высота треугольника, она же ось симметрии.
Так как вершина А лежит на оси симметрии, она отобразится в себя (т.е. точка А' совпадет с А).
Чтобы отобразить точку В относительно оси АН, надо построить из точки В луч, перпендикулярный АН, а это и есть прямая ВС.
Затем на луче ВН откладываем отрезок НВ', равный ВН, по другую сторону от точки Н.
На луче СН по другую сторону от точки Н откладываем отрезок НС', равный СН.
ΔA'B'C' - искомый.
б) Пусть D - середина АВ.
Проводим луч CD, на котором откладываем отрезок CA' = CD.
На луче AD откладываем отрезок DA' = AD. Так как D - середина АВ, точка A' совпадет с точкой В.
На луче BD откладываем отрезок DB' = BD. Так как D - середина АВ, точка В' совпадет с точкой А.
ΔA'B'C' - искомый.
в) М - точка пересечения медиан треугольника АВС.
Из вершин А, В и С проводим лучи, параллельные АМ. На них откладываем отрезки AA', BB' и CC', равные длине отрезка АМ.
При этом точка А' совпадет с точкой М.
ΔA'B'C' - искомый.
г) Так как С - центр поворота, то точка С отобразится на себя.
Строим окружность с центром в точке С и радиусом ВС.
Строим угол, равный 45° с вершиной в точке С и стороной ВС (против часовой стрелки). Точка пересечения окружности и второй стороны угла - точка В'.
Строим окружность с центром в точке С и радиусом АС.
Строим угол, равный 45° с вершиной в точке С и стороной АС (против часовой стрелки). Точка пересечения окружности и второй стороны угла - точка А'.
ΔA'B'C' - искомый