Предположим ромб АВСД. Раз это ромб значит все его стороны равны 13 дм. Пускай диагональ ВД=24 дм. Проведем еще диагональ АС (ее и будем искать). Диагонали ромба в точке пересечения делятся пополам и под прямым углом. Назовем точку пересечения диагоналей О. Итак ВО=ОД=12дм. Рассмотрим треугольник ВОС. Угол О =90 градусов, следовательно по теореме Пифагора находим катет ОС=корень квадратный из (ВС^2-ОВ^2)=корень квадратный из (169-144)=корень квадратный из 25 =5(дм). Поскольку АС тоже диагональ ромба, то АО=ОС=5 дм. АС=АО+ОС=5+5=10 (дм). ответ 10 дм
2) АВСМА₁В₁С₁ М₁-куб, Р,Т,К –середины сторон соответственно АВ, АА₁, АМ, S(сеч)= √10/4 .
Обозначим ребро куба х.
В сечении куба плоскостью, проходящей через середины сторон трех измерений-получился равносторонний ΔТКР (ΔТАР=ΔТАК=ΔКАР как прямоугольные по 2-м катетам) , S( равностор.тр)=(а²√3)/4 ⇒
√10/4=(ТР²√3)/4 , ТР²=√(10/3) .
Т.к. АВ=х, то АР=АТ=(х/2)
ΔТАР -прямоугольный по т. Пифагора (х/2)² +(х/2)² =ТР² ,
Объяснение:
2) АВСМА₁В₁С₁ М₁-куб, Р,Т,К –середины сторон соответственно АВ, АА₁, АМ, S(сеч)= √10/4 .
Обозначим ребро куба х.
В сечении куба плоскостью, проходящей через середины сторон трех измерений-получился равносторонний ΔТКР (ΔТАР=ΔТАК=ΔКАР как прямоугольные по 2-м катетам) , S( равностор.тр)=(а²√3)/4 ⇒
√10/4=(ТР²√3)/4 , ТР²=√(10/3) .
Т.к. АВ=х, то АР=АТ=(х/2)
ΔТАР -прямоугольный по т. Пифагора (х/2)² +(х/2)² =ТР² ,
2*(х/2)² =√(10/3) , х²=2*√(10/3), х=√(40/3),
V(куба) =√(40/3)* √(40/3)* √(40/3) =40/3*√(40/3) (см³)