Знайдіть довжину лінії перетину сфери з площиною, віддаленою від центра сфери на 2 см, якщо радіус сфери, проведений в одну з точок цієї лінії, утворює з даною площиною кут 30
Диагональ правильной четырёхугольной призмы равна а и образует с плоскостью боковой грани угол 30°. Найти: а) сторону основания призмы. б) угол между диагональю призмы и плоскостью основания в) площадь боковой поверхности призмы. г) площадь сечения призмы плоскостью, проходящей через диагональ основания параллельно диагонали призмы.
В основаниях правильной призмы - правильные многоугольники, а боковые грани - прямоугольники. Следовательно, ее боковые ребра перпендикулярны основанию. Треугольник ВD1А - прямоугольный (в основании призмы - квадрат, и ребра перпендикулярны основанию. а) Сторона основания противолежит углу 30°, поэтому АВ=а*sin 30=a/2 б) угол между диагональю призмы и плоскостью основания - это угол между диагональю ВD1 призмы и диагональю ВD основания. ВD как диагональ квадрата равна а√2):2 cos D1BD=BD:BD1=( а√2):2):a=(√2):2), и это косинус 45 градусов. в) площадь боковой поверхности призмы находят произведением высоты на периметр основания: S бок=DD1*AB= (а√2):2)*4*a/2=a²√2 г) Сечение призмы, площадь которого надо найти, это треугольник АСК. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости. Верным является и обратное утверждение. Высота КН - средняя линия прямоугольного треугольника BDD1. Она параллельна диагонали призмы, а само сечение проходит через диагональ АС основания. S Δ(АСК)=КН*СА:2 SΔ (АСК)=(0,5а*а√2):2):2=(а²√2):8
Допустим, что наша трапеция АВСD, где АВ и СD равные между собой стороны равнобедренной трапеции. ВС - это меньшее основание, а АD - это большее основание трапеции. Высота ВК делит АD на части, где АК=9 см, а КD=28 см. Выходит, что размер большего основания = АК+КD= 9+28 = 37 см. Поскольку известно, что высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, а другой — полуразности оснований. То используя это: АК=(АD-ВС)/2 9=(37-ВС)/2 37-ВС=9*2 37-ВС=18 ВС=37-18 ВС=19 см.
плоскостью боковой грани угол 30°. Найти:
а) сторону основания
призмы.
б) угол между диагональю призмы и плоскостью основания
в) площадь боковой поверхности призмы.
г) площадь сечения призмы плоскостью, проходящей через диагональ основания параллельно диагонали призмы.
В основаниях правильной призмы - правильные многоугольники, а боковые грани - прямоугольники. Следовательно, ее боковые ребра перпендикулярны основанию.
Треугольник ВD1А - прямоугольный (в основании призмы - квадрат, и ребра перпендикулярны основанию.
а) Сторона основания противолежит углу 30°, поэтому АВ=а*sin 30=a/2
б) угол между диагональю призмы и плоскостью основания - это угол между диагональю ВD1 призмы и диагональю ВD основания.
ВD как диагональ квадрата равна а√2):2
cos D1BD=BD:BD1=( а√2):2):a=(√2):2),
и это косинус 45 градусов.
в) площадь боковой поверхности призмы находят произведением высоты на периметр основания:
S бок=DD1*AB= (а√2):2)*4*a/2=a²√2
г) Сечение призмы, площадь которого надо найти, это треугольник АСК.
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости. Верным является и обратное утверждение.
Высота КН - средняя линия прямоугольного треугольника BDD1. Она параллельна диагонали призмы, а само сечение проходит через диагональ АС основания.
S Δ(АСК)=КН*СА:2
SΔ (АСК)=(0,5а*а√2):2):2=(а²√2):8
Высота ВК делит АD на части, где АК=9 см, а КD=28 см.
Выходит, что размер большего основания = АК+КD= 9+28 = 37 см.
Поскольку известно, что высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, а другой — полуразности оснований. То используя это:
АК=(АD-ВС)/2
9=(37-ВС)/2
37-ВС=9*2
37-ВС=18
ВС=37-18
ВС=19 см.