Перпендикуляр, проведенный через середину боковой стороны равнобедренного треугольника, делит высоту, проведенную к основанию, на отрезки 17 см и 8 см, считая от вершины. Найти площадь и периметр данного треугольника.
Обозначим вершины треугольника А, В, С, причем АВ=ВС.
Т.к. ∆ АВС - равнобедренный, высота ВН, проведенная к основанию, является медианой, и, следовательно, ВН - срединный перпендикуляр. Точка пересечения срединных перпендикуляров треугольника - центр описанной вокруг него окружности.
Расстояние от О до вершин А, В и С равно радиусу. R=ВО=СО=17 см.
∆ СОН - прямоугольный, его гипотенуза и один из катетов - из Пифагоровых троек ( 8, 15,17), ⇒, НС=15 см ( проверьте по т.Пифагора).
Отсюда АС=2•15=30 см
По т.Пифагора AB=ВС=√(BH*+CH*)=√(625+225)=√850=5√34 см
Высота делит треугольник на два равных прямоугольных треугольника BDC и BDA, если меньший катет лежит против угла в 30 градусов значит этот катет равен половине гипотенузы, в треугольнике BDC, ВС - гипотенуза
ВС=25,6 по условию, BD - меньший катет BD= 12,8 по условию, как мы видим меньший катет равен половине гипотенузы, значит угол С=30 градусов, теперь надо найти угол DBC, сумма углов любого треугольника составляет 180 градусов, в нашем треугольнике угол D=90 градусов(так как прямой), угол С = 30 градусов(мы нашли выше), значит угол DBC=180-90-30=60 градусов
Угол С=30 градусов
Угол А=30 градусов (так как треугольник равнобедренный, значит и углы прилежащие к основанию равны)
Найти площадь и периметр данного треугольника.
Обозначим вершины треугольника А, В, С, причем АВ=ВС.
Т.к. ∆ АВС - равнобедренный, высота ВН, проведенная к основанию, является медианой, и, следовательно, ВН - срединный перпендикуляр. Точка пересечения срединных перпендикуляров треугольника - центр описанной вокруг него окружности.
Расстояние от О до вершин А, В и С равно радиусу. R=ВО=СО=17 см.
∆ СОН - прямоугольный, его гипотенуза и один из катетов - из Пифагоровых троек ( 8, 15,17), ⇒, НС=15 см ( проверьте по т.Пифагора).
Отсюда АС=2•15=30 см
По т.Пифагора AB=ВС=√(BH*+CH*)=√(625+225)=√850=5√34 см
Р=30+2•5√34=10•(3+√34) см
S=BH•CH=375 см²
Угол ВАС = 30 градусов
Угол ВСА = 30 градусов
Угол АВС = 120 градусов
Объяснение:
Высота делит треугольник на два равных прямоугольных треугольника BDC и BDA, если меньший катет лежит против угла в 30 градусов значит этот катет равен половине гипотенузы, в треугольнике BDC, ВС - гипотенуза
ВС=25,6 по условию, BD - меньший катет BD= 12,8 по условию, как мы видим меньший катет равен половине гипотенузы, значит угол С=30 градусов, теперь надо найти угол DBC, сумма углов любого треугольника составляет 180 градусов, в нашем треугольнике угол D=90 градусов(так как прямой), угол С = 30 градусов(мы нашли выше), значит угол DBC=180-90-30=60 градусов
Угол С=30 градусов
Угол А=30 градусов (так как треугольник равнобедренный, значит и углы прилежащие к основанию равны)
Угол В=60+60=120 градусов