ответ: площадь прямоугольника увеличилась в 4 раза
Объяснение:
Пусть а - ширина изначального прямоугольника, b - его длина. Тогда площадь такого прямоугольника рассчитаем по формуле: S1 = ab.
Теперь увеличим ширину прямоугольника в 2 раза, получаем 2а. Его длину увеличим в 2 раза, получим 2b. Таким образом, площадь нового прямоугольника будет: S2 = 2a * 2b = 4ab.
Чтобы узнать во сколько раз увеличилась площадь прямоугольника после увеличения его длины и ширины, разделим большую площадь на меньшую:
S1/S2 =4ab/ab = 4.
ответ: площадь прямоугольника увеличилась в 4 раза
Мы можем найти сторону которая лежит против угла 30°. Наверное, СВ - гипотенуза, поэтому сторона против угла в 30 ° будет равна половине гипотенузы, т.е 3 сантиметра. Записывается так. угол В =30° следовательно АС = 1/2 СВ АС=3см. Мы можем найти другой катет. По теореме Пифагора Он находится так б = √с в квадрате минус а в квадрате. = √36-9=√25=5см. Находим периметр. 5см + 3 см + 6 см = 14см. Находим площадь. Площадь прямоугольного треугольника равна половине его катетов. 1/2аб=1/2 5*3/2=7.5см в квадрате ответ: Площадь 7.5см в квадрате, периметр 12см
ответ: площадь прямоугольника увеличилась в 4 раза
Объяснение:
Пусть а - ширина изначального прямоугольника, b - его длина. Тогда площадь такого прямоугольника рассчитаем по формуле: S1 = ab.
Теперь увеличим ширину прямоугольника в 2 раза, получаем 2а. Его длину увеличим в 2 раза, получим 2b. Таким образом, площадь нового прямоугольника будет: S2 = 2a * 2b = 4ab.
Чтобы узнать во сколько раз увеличилась площадь прямоугольника после увеличения его длины и ширины, разделим большую площадь на меньшую:
S1/S2 =4ab/ab = 4.
ответ: площадь прямоугольника увеличилась в 4 раза
АС=3см.
Мы можем найти другой катет. По теореме Пифагора
Он находится так б = √с в квадрате минус а в квадрате. = √36-9=√25=5см.
Находим периметр.
5см + 3 см + 6 см = 14см.
Находим площадь.
Площадь прямоугольного треугольника равна половине его катетов.
1/2аб=1/2 5*3/2=7.5см в квадрате
ответ: Площадь 7.5см в квадрате, периметр 12см